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Abstract. Computing Set Intersection privately and efficiently between
two mutually mistrusting parties is an important basic procedure in the
area of private data mining. Assuring robustness, namely, coping with
potentially arbitrarily misbehaving (i.e., malicious) parties, while retain-
ing protocol efficiency (rather than employing costly generic techniques)
is an open problem. In this work the first solution to this problem is
presented.
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1 Introduction

Constructing an efficient, robust two-party protocol for computing set intersec-
tion that is secure and realizable given current encryption methods is an open
question first introduced in the work of Freedman, Nissim and Pinkas [9]. Here
we solve this problem and present a protocol that allows two mutually distrustful
parties holding private inputs to compute the intersection of their inputs without
revealing any additional information. We prove the security of our protocol in
the standard Ideal/Real Model. The Set Intersection primitive is widely used in
the area of privacy preserving data mining ([19]); the prototypical application
involve secure sharing of information in areas like personal health and finance.

Although generic robust methods (c.f., [20]) based on Yao’s general two-party
computations [25] are sufficient for computing any two-party functionality, here
we are after efficient methods. Since the size of the naive circuit needed to com-
pute Set Intersection is at least Ω(m · n) (where n is the input size of the party
that receives output and m is the input size of the other party) any generic
construction for semi-honest two-party computation will have communication
complexity Ω(m · n), even without robustness. In contrast, our protocol’s com-
munication complexity is O(mk2 log2 n + kn) ciphertexts, where k is a security
parameter (i.e. logarithm of the size of the field, where we allow sets that are
arbitrary but are representable in this field). Additional properties of our solu-
tion are worth mentioning: First, the number of exponentiations needed by our
protocol increases only by a poly-logarithmic (i.e. a k2 log2 n) factor in compari-
son to the number of exponentiations required by the semi-honest protocol of [9]
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over domains as above. Secondly, our construction is fully-black box assuming
the existence of a homomorphic encryption scheme. Finally, the encryption is
only required to possess a few natural properties, which are discussed in the fol-
lowing section (and satisfied by known homomorphic encryption schemes, e.g.,
based on DDH).

Our Methodology and Techniques. Our starting point is the semi-honest
protocol of [9] that computes set intersection via polynomial evaluation. In this
protocol, the Server must evaluate an encrypted polynomial of degree n on each
of his inputs and send the (encrypted) results back to the Client. In the malicious
adversary case, though, to achieve security, the Client must be able to verify that
the Server evaluated the polynomial honestly with respect to its input. To ensure
this, we use techniques that add redundancy to the representation of the inputs
(this is motivated by techniques in Choi et. al [6]). More specifically, we employ
a Server that shares its input via a Shamir secret-sharing [23] threshold scheme
using a degree k polynomial, where k is the security parameter, and then commits
to shares of its input. Note that a Shamir secret-sharing can also be viewed as a
Reed-Solomon encoding of the input. What we would like to do next is have the
server evaluate the encrypted polynomial on each share of its input and send the
resulting shares to the Client. Note that due to the fact that polynomials are
closed under composition, the above yields a valid-secret sharing (and a valid
Reed-Solomon encoding) of the output value. However, the resulting polynomial
is now of degree n · k, and so we need at least n · k + 1 shares to recover the
secret. To improve our efficiency, we apply input-preprocessing technique that
allows us to reduce the degree of the output polynomial to d = k(�log n�+1)+k,
and thus we need only O(k(�log n� + 1)) shares in order to recover the shared
value.

Next, we ensure that the Server acted honestly for a large-fraction of the
shares by executing a cut-and-choose protocol that forces the Server to open
k random shares for each committed input value, thus allowing the Client to
verify that the corresponding output share was computed correctly. Due to the
information-theoretic security of the secret-sharing scheme, no information about
the input is leaked by opening these shares. Additionally, the Client checks that
all the output shares he received indeed lie on the same polynomial of degree
d. Due to the large distance between codewords in a Reed-Solomon code this
ensures that, in fact, all the shares were computed exactly correctly. Finally, the
Client reconstructs the secret, which is now guaranteed to be consistent with
the Server’s inputs. Note that in the two-party case, we only need to either
complete the computations if the other party acts honestly, or detect cheating.
This allows us to use Lagrange interpolation and a consistency check as an
error detection code, rather than error-correction (implied by techniques such as
Berlkamp-Welch). As is noted in the sequel, this is important to the realization
of the encryption schemes, since the interaction of the algebra of secret sharing
methods and the algebra of concrete encryption schemes is a subtle issue (not
treated in earlier work). We ensure that every algebraic operation used in our
protocol is realizable given a concrete encryption scheme.
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Related Work. Multiple papers address the problem of secure set intersection
and suggest various solutions [1,9,18,12]. (We remark that, in addition, several
works deal with variants of set intersection such as the private equality test for
input sets of size one [8,21,3,14] or the problem of disjointness that asks whether
the intersection of two sets is empty ([17])). However, none of the protocols for
set intersection that have been suggested thus far are secure in the scenario of ar-
bitrarily malicious adversaries and arbitrary input domains. Freedman et. al([9])
present a protocol claimed (without details or proofs) to be secure in the pres-
ence of a malicious Client in the standard Ideal/Real model, and secure in the
presence of a malicious Server only in the Random Oracle model. Hazay and
Lindell ([12]), in turn, adopt a different approach based on secure pseudoran-
dom function evaluation that does not use random oracles but they only achieve
security against a malicious Client (and semi-honest Server), or security against
two covert parties, where covert is a new non-standard model that is stronger
than semi-honest, but weaker than malicious. Recently (and independently of
our work), Jarecki and Liu ([15]) extend the approach of [12] to provide a proto-
col secure against two malicious parties, when the input sets are chosen from a
polynomial-sized domain and based on the Decisional q-Diffie-Hellman Inversion
Assumption. We also note the work of Kissner and Song ([18]) which presents
multi-party protocols that are secure in the presence of semi-honest adversaries
for several set operations including Set Intersection. Additionally, they briefly
address achieving security in the presence of malicious adversaries, but their
method relies on inefficient generic zero-knowledge proofs. Also independently,
Camenisch and Zaverucha ([4]) extend the protocol of [9] in a different direction
where they assume the presence of a certifying third party that signs the input
sets of the two participants. This provides guarantees that the set intersection
functionality is computed correctly with respect to the signature certified input
sets in the presence of malicious adversaries.

Organization. In section 2 we present definitions and known building blocks,
while in Section 3 we present our protocol steps and protocol. In Section 4 we
present some intuition for the proof of security, and discuss our complexity.

2 Definitions and Building Block Protocols

We use a standard simulation-based definition of security from [5], and follow
the definitions of zero knowledge proofs of knowledge and commitment schemes
from [10]. We denote ComB a perfectly binding commitment scheme and ComH

a perfectly hiding commitment scheme.
We follow the standard definitions of semantically-secure encryption schemes

and homomorphic encryption schemes given in [16]. We assume the plaintexts of
the semantically-secure encryption scheme ENC are elements of a finite group P
with group operation ’+’ and that the ciphertexts are elements of a finite group
C with group operation ’·’. Since ENC is a homomorphism from P to C, the
homomorphic property of an encryption scheme ENC can be stated as follows:
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Property 1 (Homomorphic Encryption).

ENC(X, r1)·ENC(Y, r2) = ENC(X+Y, r) (ENC(X, r3))λ = ENC(λ·X, r′).

We will also require that r can be computed in polynomial-time given r1, r2, X, Y ,
r′ can be computed in polynomial time given r3, X, λ, and that r, r′ are uniformly
distributed when r1, r2, r3 are (so the encryptions after applying a homomorphic
operation are distributed as random encryption). It turns out that known ho-
momorphic encryption schemes typically satisfy the above requirements, and
actually possess the following, stronger, property:

Property 2.

ENC(X, r1)·ENC(Y, r2)=ENC(X+Y, r1+r2); (ENC(X, r3))λ =ENC(λ·X, λ·r3).

This property is satisfied by most known homomorphic encryption schemes, such
as Paillier [22], ElGamal [7], and Goldwasser-Micali [11] encryption schemes.

We also present the Additive El-Gamal Encryption scheme, which we will use
to concretely instantiate our protocol:

Definition 1 (Additive El Gamal Encryption Scheme: AEGenc).

– GEN: on input 1n generate (G, q, g) where q is prime, G is a cyclic group of
order q and g is a generator. Then choose a random x ← Zq and compute
h = gx. The public key is 〈G, q, g, h〉 and the private key is 〈G, q, g, x〉.

– ENC: on input a public key pk = 〈G, q, g, h〉 and a message m ∈ Zq, choose
a random y ← Zq and output the ciphertext

〈gy, hy · gm〉
– DEC: on input a private key sk = 〈G, q, g, x〉and a ciphertext 〈c1, c2〉, output

gm = c2/cx
1

Unlike regular Additive El Gamal decryption, here we can recover gm and not
necessarily know m. However, this will be sufficient for our application and we
are able to handle plaintexts that come from a large domain.

Now we proceed to define several auxiliary protocols that will be used in our
main protocols.

2.1 Homomorphic Encryption Proof of Knowledge

This protocol will be used by both the Server and Client when a party P0 sends
to a party P1 a public key pk and several values encrypted under ENCpk. In the
malicious case, we require P0 to prove that he knows the corresponding plain
text values and randomness and additionally that the encrypted plaintexts are
”valid” (i.e. belong to a particular language). This protocol is similar to the
polynomial time provers in [13].
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If P1 is behaving honestly, its input should be a member of the language L
whose membership can be determined in polynomial time and is closed under
addition and subtraction. The NP-language L′, is defined as follows:

L′ = {C = (pk1, c1, . . . , cα) | ci = ENCpk1(xi; ri), for some xi, ri,1 ≤ i ≤ α,

and (x1, . . . , xα) ∈ L}
Homomorphic Encryption Proof of Knowledge and Plaintext Verifi-
cation (HEPKPV) Protocol: ΠPOK

Input: P0 ← C = (pk1, c1, . . . , cα), (x1, . . . xα) ∈ L, (r1, . . . , rα) where ci =
ENCpk1(xi; ri) for 1 ≤ i ≤ α;

P1 ← C = (pk1, c1, . . . , cα)
Output: P1 outputs Accept if C ∈ L′, and Reject otherwise.

1. P0 chooses k random vectors (e11, . . . e1α), . . . , (ek1, . . . , ekα) such that for
1 ≤ i ≤ k, (ei1, . . . , eiα) ∈ L. and another k vectors (r11, . . . r1α), . . . ,
(rk1, . . . , rkα) of random numbers.

2. P0 computes the encryptions (ci1,· · ·,ciα)=(ENC(ei1, ri1), . . . ,ENC(eiα, riα))
for 1 ≤ i ≤ k and sends them to the Server.

3. P1 chooses a sequence of k bits b′1 . . . b′k and sends to P1 a commitment
to those bits: ComH(b′1 . . . b′k), along with the public parameters for the
commitment scheme.

4. P0 chooses a sequence of k bits b′′1 . . . b′′k and sends to P0 a commitment
to those bits: ComB(b′′1 . . . b′′k), along with the public parameters for the
commitment scheme.

5. P0 and P1 decommit the value b′′1 . . . b′′k and b′1 . . . b′k, respectively.
6. P0, P1 verify that the bits received correspond to the commitments that were

sent. If the check fails, they abort the protocol. Otherwise both P0 and P1

compute b1 . . . bk = b′1 . . . b′k XOR b′′1 . . . b′′k.
7. For each 1 ≤ i ≤ k:

(a) if bi = 0, P0 sends to P1 M = (ei1, · · · eiα) and R = (ri1, · · · riα);
(b) if bi = 1, P0 sends to P1 M = (x1 + ei1, · · · , xn + eiα) and R = (r1 +

ri1, · · · , rα + riα).
8. For each 1 ≤ i ≤ k:

(a) if bi =0, P1 verifies that (ci1,· · ·, ciα)=(ENC(ei1, ri1), · · ·ENC(xiα, riα));
(b) if bi = 1, P1 verifies that (c1ci1, · · · cαciα) = (ENC(x1 +ei1, r1 +ri1), · · · ,

ENC(xα + eiα, rα + riα)).
9. P1 verifies that (M) ∈ L.

10. If any of the verifications steps of P1 fail, abort the protocol. Otherwise,
accept.

Lemma 1. Assume that Homenc = (Gen, Enc, Dec) is a CPA-secure homo-
morphic encryption scheme, ComH is a perfectly hiding commitment scheme,
and ComB is a perfectly binding commitment scheme. Then protocol ΠPOK is
a Zero Knowledge Proof of Knowledge for L′.

See full version for proof.
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Now we define several languages that we will use in the main protocols in the
context of the above HEPKPV protocol:

– Language consisting of points that lie on some polynomial of degree �

Lpoly(t, u, �) = {mi,j | 1 ≤ i ≤ t, 1 ≤ j ≤ u;
for each j the points ((1, m1,j), . . . , (t, mt,j))
lie on a polynomial of degree �}.

– Language consisting of points that lie on some polynomial of degree � that
has zero free coefficient

Lpoly,0(t, u, �) = {mi,j | 1 ≤ i ≤ t, 1 ≤ j ≤ u;
for each j the points ((1, m1,j), . . . , (t, mt,j))
lie on a polynomial Pj of degree � and Pj(0) = 0}.

– Language consisting of points that lie on some polynomial of degree � that
has free coefficient equal to m′

j .

Leq(t, u, �) = {mi,j , m
′
j | 1 ≤ i ≤ t; 1 ≤ j ≤ u,

for each j the points ((1, m1,j), . . . , (t, mt,j))
lie on a polynomial Pj of degree �, where Pj(0) = m′

j}

– The following language consists of several tuple of pairs of the form (mi,j, m
′
i,j).

For each i the points (1, mi,1), . . . , (t, mi,t) lie on a polynomial Pi of degree �
and the points (1, m′

i,1), . . . , (t, m
′
i,t) lie on a polynomial Ri of degree 2� and

additionally, for each i, Pi+1(0) = Ri(0).

Lsq(t, u, �) = {(mi,j , m
′
i,j) | 1 ≤ i ≤ u, 1 ≤ j ≤ t; for all i,

the points ((1, mi,1), . . . , (t, mi,t)) lie on Pi of degree �;
the points ((1, m′

i,1), . . . , (t, m
′
i,t)) lie on Ri of degree 2�;

and for 1 ≤ i ≤ u− 1, Pi+1(0) = Ri(0)}

Membership in all of the above languages can be determined in polynomial
time. Also these languages are closed under addition and can be used in the
context of the HEPKPV protocol.

2.2 Coin Tossing

The following protocol is run by the Server S and Client C in order to select a
random number within a given range [0, s − 1] known to both of them. At the
end of the protocol both parties obtain the same random number. The private
input of the two parties is (⊥,⊥) and the output to each party is (rand, rand),
where rand is a uniformly random number chosen from [0, s− 1].
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1. S chooses a random value R′ ∈ [0, s − 1] and sends a commitment C1 =
ComH(R′) to P1.

2. C chooses a random value R′′ ∈ [0, s − 1] and sends a commitment C2 =
ComB(R′′) to P0.

3. C opens the commitments C2.
4. S opens the commitment C1.
5. The two parties output R = R′ + R′′ mod s .

We note that both statistically hiding and statistically binding commitments
can be constructed using a homomorphic encryption scheme.

Lemma 2. Assume that ComH is a statistically hiding commitment scheme
and ComB is a perfectly binding commitment scheme. Then protocol ΠCoin is
simulatable for Malicious C and Honest S.

See full version for proof.

3 Set Intersection Protocol

We now describe the setting for the Set Intersection protocol. There are two
participants in the protocol: Client, C and Server, S. The Client has an input
set X, |X | = n of size at most n ≤ maxc and the Server has an input set
Y, |Y | = m of size at most m ≤ maxs. Both parties know a homomorphic
encryption scheme Homenc = (GEN, ENC, DEC). Further the Client and the
Server choose a security parameter k. The goal of the protocol is that the Client
learns the intersection of their sets: X

⋂
Y and nothing else while the Server

learns nothing. Now if the pair (Kc, Ks) represents knowledge of the Client (Kc)
and the Server (Ks), the input and output of the set intersection protocol can
be summarized as follows:

({X, maxc, maxs, Homenc, k},
{Y, maxs, maxc, Homenc, k}) →

{
(X

⋂
Y,⊥), if |X | ≤ maxc, |Y | ≤ maxs

(⊥,⊥) otherwise

Our idea starts with the approach of [9]: the Client constructs a polynomial
P of degree n over a finite field such that P (x) = 0 if and only if x ∈ X . The
Client encrypts the coefficients of P using a homomorphic encryption scheme and
sends them to the Server. Due to the homomorphic properties of the encryption
scheme, the Server is now able to evaluate the polynomial at each of its inputs.
Thus, for 1 ≤ � ≤ m, the Server sends the encryption of the following output
back to the Client: rj · P (yj) + yj , where rj is chosen randomly. Thus, we have
that if yj ∈ X ∩ Y then the Client receives yj . If yj /∈ X ∩ Y then the Client
receives a random value.

Before presenting our main protocol, we define three protocols that are used
as building blocks for the main protocol. They implement the two main ideas
that we use to achieve security against malicious parties.
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3.1 Input Sharing via Enhanced Shamir Scheme

In the set intersection protocol we ”share” function evaluation by secret sharing
the arguments of the function and evaluating the function on corresponding
shares in order to obtain shares of the final value of the function. We use Shamir’s
secret sharing ([23]) but for the purposes of efficiency we apply the following
further transformation on the inputs.

Let f be a polynomial of degree n over a single variable: f = anxn+an−1x
n−1+

· · ·+ a0. For a given z and r, we would like to obtain shares of the result g(z, r) =
r · f(z) + z by secret-sharing the inputs z and r. For this purpose we choose ran-
dom polynomials Pz, Pr of degree k for such that Pz(0) = z and Pr(0) = r and
evaluate g on m shares of the input to obtain g(Pz(1), Pr(1)), . . . g(Pz(m), Pr(m)).
We now define a new single variable polynomial g′(i) = g(Pz(i), Pr(i)). Note that
the degree of g′ is n · k + k and that g′(0) = g(Pz(0), Pr(0)) = g(z, r) and thus
given g(Pz(1), Pr(1)), . . . , g(Pz(m), Pr(m)) = g′(1), . . . , g′(m) we can reconstruct
g′(0) = g(z, r) when m ≥ n · k + k. This means that the number of shares needed
is at least n · k + k.

We extend the above idea further in order to decrease the degree of the final
sharing polynomial of the result. For a given z and r, we obtain shares of the
result g(z, r) in the following way. For 0 ≤ � ≤ �log n� we secret share the
value z2�

using a random polynomial Pz2� , of degree k, such that Pz2� (0) = z2�

.
Let s[i] indicate the ith bit of a number s. We now define a new polynomial
g′′(i) = Pz(i) + Pr(i) ·Σn

s=1as ·Π�log n�+1
�=1 (Pz2� (i))s[�]. Note that g′′(0) = g(z, r)

and that g′′ has degree (�log n�+ 1)k + k. We have thus drastically reduced the
number of shares necessary to recover g′′(0) = g(z, r).

The above idea for function transformation guarantees correct evaluation of
shares of the functional value if the party is following the protocol honestly.
In the malicious case a party needs to prove that the sharing functions that it
is using for the new arguments z, z2, . . . , z2�

have been constructed correctly.
The following protocol allows a party to generate shares of an input z using the
preprocessing idea and then prove that these shares were computed correctly
without revealing any information about z.

Efficient Preprocessing of Input:
1. For each yj ∈ Y , 1 ≤ j ≤ m S chooses a random polynomial Pyj of degree

k such that Pyj (0) = yj , and computes shares of the form Pyj (i) for 1 ≤ i ≤
10k(�logn�+ 1) and the corresponding encryptions ENCpk(Pyj (i)).

2. For each yj , 1≤�≤m S and C run the HEPKPV protocol with Lpoly(m, n, k)
= {mi,j = Pyj (i)} in order for S to prove the correctness of his sharing.

3. For each yj , for � = 0 to �log n�, for i = 0 to 10k(�logn� + 1), S computes
the following:
– Local Computation on Shares: a polynomial P 2

y2�
j

of degree 2k such that

P 2

y2�
j

(i) = (P
y2�

j

(i))2

– Degree Reduction Step: a random polynomial P
y2�+1

j

of degree k such

that P
y2�+1

j
(0) = P 2

y2�
j

(0).
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4. For each yj , for � = 0 to �log n�, for i = 1 to 10k(�logn� + 1), S computes
the following commitments:
– New input shares: ENCpk(P

y2�+1
j

(i)) and

– Intermediate shares: ENCpk(P 2

y2�
j

(i))
and sends those commitments to C

We now describe how C verifies S’s computation of its new shares.
Let J be the ordered set of all elements of {0, 1}10k(�log n�+1) that contain

exactly k ones. Note that given R, an index of a string in the set J , we can
efficiently reconstruct the Rth string, jR. Let JR = {i|jR[i] = 1}, where jR[i]
denotes the ith position of the string jR.

Preprocessing Verification:
Common Inputs : The commitments: [Cj,�,i]1≤j≤m,0≤�≤�log n�+1,1≤i≤10k(�log n�+1),
[C2

j,�,i]1≤j≤m,0≤�≤�log n�,1≤i≤10k(�log n�+1), and a number R ∈ [|J |] chosen using
the Coin-Tossing protocol after S committed to its inputs.

Private Inputs of S: Decommitments to the above values.

1. For all i ∈ JR, 1 ≤ j ≤ m, 0 ≤ � ≤ �log n� S opens the commitment C2
j,�+1,i

to C′2
j,�+1,i, Cj,�,i to C′

j,�,i.
2. For all i ∈ JR, 1 ≤ j ≤ m, 0 ≤ � ≤ �log n� C checks that C′2

j,�+1,i = (C′
j,�,i)

2.
3. S and C run the HEPKPV protocol with S’s private inputs, the com-

mon commitment inputs and language Lsq(�log n�, 10k(�logn�+ 1), m, k) =
{m�,i,j = P

y2�
j

(i), m′
�,i,j = P 2

y2�
j

(i)}

In the first step of the above protocol S first proves that for all yj ∈ Y, 0 ≤ � ≤
�log n� he has computed correctly P 2

y2�
j

(i) for at least a .9-fraction of the shares

correctly. In the second step of the protocol S proves that for all yj ∈ Y, 0 ≤ � ≤
�log n� he has computed correctly the new sharing polynomials for the values y2�+1

j

and that both P
y2�

j

and P 2

y2�
j

are polynomials. Since any 2 polynomials of degree at

most 2k must disagree on at least a .8-fraction of the shares, the combination of
the above two statements implies that with probability at least 1−m · (�n�+2)2 ·
(1/2k+ .9k), all the sharings were, in fact, computed exactly correctly. For detailed
analysis of the above intuition, see the proof sketch in section 4 and the full version.

3.2 Cut-and-Choose on Computations on Input Shares

Common Input : The encryptions: bn+1, . . . , b0, The commitments:
[Mi,j,�]1≤j≤m,0≤�≤�log n�,1≤i≤10k(�log n�+1), [Ri,j ]1≤j≤m,1≤i≤10k(�log n�+1),
[0i,j ]1≤j≤m,1≤i≤10k(�log n�+1), [Ci,j ]1≤�≤m,1≤i≤10k(�log n�+1), and a number R ∈
[|J |] chosen using the Coin-Tossing protocol after S committed to the above.

Private input of S:Decommitments to[Mi,j,�]1≤j≤maxS ,0≤�≤�log n�,1≤i≤10k(�log n�+1),
[Ri,j ]1≤j≤m,1≤i≤10k(�log n�+1), [Zi,j ]1≤j≤m,1≤i≤10k(�log n�+1), and the values
[ri,j ]1≤j≤m,1≤i≤10k(�log n�+1).
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We use the cut-and-choose technique to prove the correctness of evaluation of
a specific function on committed inputs [Mi,j,�], [Ri,j ], [Zi,j ] that results in the
commited outputs [Ci,j ]. The function we use is:

Ci,j = ENC(0; ri,j) ·ENCpk1(Z
′
i,j ; 0) ·ENCpk1(M

′
i,j,0; 0) ·

(

Πn
s=0b

Π
�log n�
�=0 (M′

i,j,�)
s[�]

s

)R′
i,j

where s[�] denotes the �th bit of s.
We will explain why this is the function we need in the next section.
The steps of the protocols are the following:

1. For each i ∈ JR, 1 ≤ j ≤ m, 0 ≤ � ≤ �log n� S opens the commitments
Mi,j,�, Ri,j , Zi,j to M ′

i,j,�, R
′
i,j , Z

′
i,j and produces the random value ri,j .

2. For i ∈ JR, 1 ≤ j ≤ m, C verifies the following: Ci,j =

ENCpk1(0; ri,j) ·ENCpk1(Z
′
i,j ; 0) ·ENCpk1(M

′
i,j,0; 0) ·

(

Πn
s=0b

Π
�log n�
�=0 (M′

i,j,�)
s[�]

s

)R′
i,j

3. If any of these verifications fail, C outputs Reject. Otherwise, C outputs
Accept.

3.3 Reconstruction and Set Membership Test Protocol

We describe here how the Client reconstructs and checks whether Server’s input
yj is in his input set X and consequently in the intersection set using the output
shares [Ci,j ]1≤i≤10k(�log n�+1).

1. The Client decrypts the output shares [Ci,j ]1≤i≤10k(�log n�+1) to obtain plain-
texts [C′

i,j ]1≤i≤10k(�log n�+1).
2. The Client uses the points (1, C′

1,j), . . . , (k + k(�log n�+ 1), C′
k+k(�log n�+1),j

and the Lagrange interpolation polynomial to check that for 1 ≤ i ≤ 10k
(�log n�+ 1)

C′
i,j = Lj(i) = Σ

1+k+k(�log n�+1)
v=1 C′

j,v�v(i)

where �v(x) = Π
1+k+k(�log n�+1)
w=1,w �=v

x−w
v−w . Otherwise, abort.

3. The Client reconstructs the shared value:

C′
0,j = Lj(0) = Σ

1+k+k(�log n�+1)
v=1 C′

j,v�v(0)

and checks whether C′
0,j = x for some x ∈ X . If it does, output x.

In the following, we give a concrete implementation of the Reconstruction Pro-
tocol using additive El Gamal encryption. We note the following subtlety due
to the interaction of the algebraic properties needed to realize the protocol and
the properties of the El Gamal encryption scheme. Due to the algebraic proper-
ties of the encryption scheme, we are able to compute the Lagrange interpolation
polynomial and thus detect errors; however, we cannot run the Berlekamp-Welch
algorithm to correct the errors in the codeword. This is due to the fact that the
Client can only obtain pairs of the form (i, gmi,j) and we are interested in recon-
structing a polynomial such that P (i) = mi,j (for a large fraction of i’s). The
Berlekamp-Welch algorithm requires us to solve a system of linear equations,
which we do not know how to do efficiently when we know only gmi,j and not
mi,j itself (This issue was ignored in earlier work).



Efficient Robust Private Set Intersection 135

Reconstruction and Set Membership Test via Additive El Gamal En-
cryption

1. The Client decrypts the output shares [Ci,j ]1≤i≤10k(�log n�+1) to obtain plain-
texts [gmi,j ]1≤i≤10k(�log n�+1).

2. The Client uses the points (1, gm1,j ), . . . , (1 + k + k(�log n� + 1),
gmk+k(�log n�+1),j and the Lagrange interpolation polynomial to check that
for 1 ≤ i ≤ 10k(�logn�+ 1)

gmi,j = Lj(i) = Π
1+k+k(�log n�+1)
v=1 (gmj,v )�v(i)

where �v(x) = Π
1+k+k(�log n�+1)
w=1,w �=v

x−w
v−w . Otherwise, abort.

3. The Client reconstructs the shared value:

gm0,j = L(0) = Π
1+k+k(�log n�+1)
v=1 (gmj,v )�v(0)

and checks whether gm0,j = gx for some x ∈ X . If it does, output x.

3.4 The Full Protocol

We start with an overview description of the main steps in the protocol, followed
by the detailed specification of our set intersection protocol.

1. The Client runs GEN(1k) to obtain a secret key sk and a public key pk for
Homenc and sends pk to the Server.

2. The Client computes a polynomial P (x) = xn + an−1x
n−1 + · · ·+ a1x + a0

of degree the size of his input n over a finite field such that P (x) = 0 if and
only if x ∈ X .

3. The Client encrypts the coefficients of P , bi = ENC(ai) and sends them to
the Server.

4. For each yj ∈ Y S chooses a random value rj and constructs the function

F (yj) = ENCpk1(rj · (yj) + yj + 0) =

= ENCpk1(0) · ENCpk1(yj) · (
n∏

s=0

(ENCpk1(as))ys
j )rj =

= ENCpk1(0) · ENCpk1(yj) · (
n∏

s=0

(bs)ys
j )rj

The above function has the property that it maps the values in the intersec-
tion set of the two parties to themselves and values not in the intersection
to random numbers.

5. The Server replaces each of its inputs yj with new variables c� = y2�

j for
0 ≤ � ≤ �log n− 1� and transforms the above function to

F (yj) = ENCpk1(0) · ENCpk1(yj) ·
(

n∏

s=0

(bs)Π
�log n�
�=0 (y2�

j )s[�]

)rj
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Note: The exponent of each bs is ys
j , however, in the form where s is written

in binary and s[1], ..., s[�logn�+ 1] are its binary digits and the power of yj

for each digit is substituted with the corresponding new variable from the
efficient preprocessing of Servers inputs.

6. The Server shares each of his input y ∈ Y with polynomial Pyj and each of
the random values rj with a polynomial Prj .

7. Additionally the Server computes m random polynomials P0,j that have
constant coefficient zero. These are used to ”rerandomize” the output shares
so that they give no information about the input.

8. Using all of the above shares and a random ri,j (to ”rerandomize” the en-
cryption) the Server computes shares of the values F (yj):

Outi,j = (F (yj))(i) = ENCpk1(0; ri,j) · ENCpk1(P0,j(i); 0) · ENCpk1(Pyj (i); 0) ·
(

n∏

s=0

(bs)
Π

�log n�
�=0 (P

y2�
j

(i))s[�]
)Prj

(i)

and sends them to the Client.
9. The Client decrypts the values that he received from the Server, verifies

that they are valid, and uses them to reconstruct the shared values. He
concludes that the obtained values that are in his input set are the values in
the intersection set.

The above protocol ensures privacy in the presence of semi-honest parties,
but is not secure in the presence of malicious parties. The following are several
basic additional conditions that must hold in order that the above protocol will
be secure in the presence of malicious parties.

The first condition is that the coefficients that the Client sends to the Server
are values encrypted with Homenc under the key pk. We guarantee this by
making the Client prove that he knows the encrypted values with HEPKPV.

Additionally, the Client must be sure that the Server correctly shared his
inputs using the secret-sharing scheme. This will be guaranteed by HEPKPV
showing that all the shares of one input lie on some polynomial of degree k.

The correctness of the protocol also depends on the Server evaluating F hon-
estly. We apply the cut-and-choose protocol on the shares of the Server’s inputs
to ensure that the computation on a large fraction of final output shares was
done correctly.

The last change that we apply improves the efficiency of the protocol. Since
the number of shares needed to reconstruct Fj(0) will depend on the degree of
F , we reduce its degree by introducing new variables of the form ai = y2i

for
1 ≤ i ≤ �log n − 1� for y ∈ Y . Here we need to prove that the computation of
the new variables and their shares was done correctly with the Preprocessing
Verification Protocol.

We present the full set intersection protocol below.
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Set Intersection Protocol Π

Input: C ← {X, maxc, maxs, Homenc, k}, S ← {Y,maxs, maxc, Homenc, k}
Output: C → X ∩ Y, S →⊥
Protocol:

1. The Client runs GEN(1k) to obtain a secret key sk1 and a public key pk1
for Homenc and sends pk1 to the Server.

2. C computes a polynomial P (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 of degree

n = |X| such that P (xi) = 0 if and only if xi ∈ X. Let an = 1.
3. C computes bi = ENCpk1(ai) for all 0 ≤ i ≤ n − 1 and sends to S
{bn−1, · · · , b0},

4. C and S run the HEPKPV Protocol presented in Section 2 as P0 and P1

respectively with common input: B = {bn−1, · · · , b0} and L = {0, 1}q, in
order that the C proves that it knows the decryptions of {bn−1, · · · , b0}.

5. The Server runs GEN(1k) to obtain a secret key sk2 and a public key pk2
for Homenc and sends pk2 to the Client.

6. For each yj ∈ Y S runs the Efficient Preprocessing protocol to obtain the
new variables c� = y2�

j for 0 ≤ � ≤ �log n− 1	 and the corresponding sharing
polynomials P

y2�
j

such that P
y2�

j
(0) = y2�

j . During the protocol S commits

to P
y2�

j
(i) for 1 ≤ j ≤ |Y |, 1 ≤ � ≤ �log n	+ 1, 1 ≤ i ≤ 10k(�log n	+ 1).

7. For each yj ∈ Y S chooses a random value rj and selects a random poly-
nomial Prj of degree k with constant coefficient equal to rj , shares rj into
into 10k(�log n	+ 1) shares, and sends the following share commitments to
C: (ENCpk2(Prj

(1)), . . . ,ENCpk2(Prj
(10k(�log n	+ 1)))

8. For each yj ∈ Y S chooses a random polynomial P0,j of de-
gree k + k(�log n	 + 1) with constant coefficient equal to 0, computes
10k(�log n	 + 1) shares, and sends the following share commitments to C:
(ENCpk2(P0j

(1)), . . . ,ENCpk2(P0j
(10k(�log n	+ 1)))

9. For each yj ∈ Y , for 1 ≤ i ≤ 10k(�log n	+ 1) using the sharing polynomials
obtained in Steps 6, 7, 8, and a random value ri,j S computes:

Outi,j = ENCpk1(0; ri,j) · ENCpk1(P0,j(i); 0) · ENCpk1(Pyj
(i); 0) ·

(
n∏

s=0

(bs)
Π

�log n�
�=0 (P

y2�
j

(i))s[�]
)Prj

(i)

where s[�] denotes the �th bit of s and sends the obtained values to C.
10. C and S run the coin tossing protocol to choose a random number R ∈

[1, |J |].
11. S and C run the Preprocessing Verification protocol with the share com-

mitments that S computed in Step 6 in order for S to prove to C that it
correctly computes the new variables and their shares.

12. S and C run the HEPKPV protocol as P0 and P1 respectively so that S
proves to C knowledge and validity of the commitments Lpoly(10k(�log n	+
1), |Y |, k) = {mi,j = Prj (i)}, Lpoly,0(10k(�log n	 + 1), |Y |, k + k(�log n	 +
1)) = {mi,j = P0,j(i)}.

13. C and S run the cut-and-choose protocol to prove that S correctly computed
[Outi,j ].

14. C runs the Reconstruction Protocol to obtain the final output.
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4 Analysis

Our main theorem is the following:

Theorem 1. If the Decisional Diffie-Hellman problem is hard in G with gen-
erator q and protocol Π is instantiated with the additive El-Gamal encryption
scheme such that Homenc = AEGenc, then Π securely computes the Set Inter-
section functionality in the presence of malicious adversaries.

We note that Π is also secure when instantiated with any homomorphic encryp-
tion scheme satisfying property 2, and allowing to solve the Lagrange interpola-
tion, as discussed in Sections 2 and 3.3. In particular, we can securely instantiate
the protocol with a properly modified version of Paillier encryption (but the de-
tails are left out of this abstract). The complete proof of Theorem 1 is in the full
version of our paper. Here we give some intuition and a proof sketch.

4.1 Client-Side Simulator

We consider the case in which the Client is corrupted and the Server is honest.
Let AC be a non-uniform probabilistic polynomial-time real adversary that con-

trols the Client. We construct a non-uniform probabilistic expected polynomial-
time ideal model adversary simulator SC .

The idea behind how SC works is that it first extracts the Malicious Client’s
inputs using the extractor for the HEPKPV protocol. SC then plays the role
of the Honest Server using dummy inputs that are all set to 0. When proving
knowledge and validity of the Server’s input, SS uses the simulator for the HEP-
KPV protocol. Next, the Simulator chooses a random subset I ′ of size k such
that I ′ ⊂ [10k(�logn�+1)]. When committing to the secret-sharing of its input,
it places random values in the positions indexed by I ′. SC computes correctly
all calculations that will be verified in the cut-and-choose step for elements in
the subset I ′. Then, SC simulates the Coin-Tossing protocol to guarantee that
the outcome of the Coin-Tossing protocol is I = I ′. To ensure that the final
output sent to the Client is correct, the Simulator utilizes the the Trusted Party
to find out the elements in X ∩Y and includes them in the Server’s final output.
Intuitively, because the Simulator is able to choose the set I ahead of time, the
Simulator can run the protocol using the challenge ciphertext from a CPA-IND
experiment as the inputs of the Server in indeces i /∈ I, thereby reducing indis-
tinguishability of the views to the semantic security of the encryption scheme
AEGenc. Therefore, we have that the Malicious Client cannot distinguish its
view in the Ideal Model when interacting with a Simulator that chooses all 0
values as the Server’s input for indeces i /∈ I and its view in the Real model when
the Honest Server uses its actual input. This is due to the information-theoretic
secrecy of the secret-sharing scheme and the semantic security of the encryption
scheme.

We now describe in detail the Simulator for the case of the Malicious Client
and Honest Server
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1. SC extracts the Client’s inputs using the extractor for the HEPKPV proto-
col.

2. SC uses the Berlekamp factoring algorithm ([2]) to factor the extracted poly-
nomial and obtain the Malicious Client’s input set X .

3. SC sends X to the Trusted Party and receives back the set Out = X ∩ Y .
4. SC chooses a random subset I ′ ⊂ [10k(�logn�+1)] of size k, I ′ = {j1, . . . , jk}
5. Input Preprocessing:

– SC chooses a random value ri,j,l and sets P
y2i

j
(l) = ri,j,l for 1 ≤ j ≤

maxS , 0 ≤ i ≤ �log n�, l ∈ I.
– SC sets P

y2i
j

(l) = 0 for 1 ≤ j ≤ maxS , 0 ≤ i ≤ �log n�, l ∈ [10k(�logn�+
1)] \ I ′.

– SC sets P 2

y2i
j

(l) = (P
y2i

j
(l))2 for 1 ≤ j ≤ maxS , 0 ≤ i ≤ �log n�− 1, l ∈ I ′

– SC sets P 2

y2i
j

(l) = 0 for 1 ≤ j ≤ maxS , 0 ≤ i ≤ �log n� − 1, l ∈
[10k(�logn�+ 1)] \ I ′

– SC commits to these inputs.
6. Choosing Random Polynomials:

– SC chooses a random value rj,l and sets Prj (l) = rj,l for 1 ≤ j ≤
maxS , l ∈ I ′.

– SC sets Prj (l) = 0 for 1 ≤ j ≤ maxS , l ∈ [10k(�logn�+ 1)] \ I ′.
– SC commits to these inputs

7. Choosing Zero Polynomials:
– SC chooses a random value rj,l and sets P0,j = rj,l for 1 ≤ j ≤ maxS , l ∈

I ′.
– SC sets P0,j = 0 for 1 ≤ j ≤ maxS , l ∈ [10k(�logn�+ 1)] \ I ′.
– SC commits to these inputs

8. For 1 ≤ j ≤ maxS and for i ∈ I ′, SC honestly computes the outputs
Outi,j = ENCpk1(si,j) based on the inputs committed to in the previous
stages.

9. For each yj ∈ Out, SC chooses a random polynomial POutj of degree k +
k(�log n� + 1) such that POutj (i) = si,j for i ∈ I ′ and POutj (0) = yj . Note
that SC can compute si,j since it has extracted the coefficients of the Client’s
polynomial P .

10. For each yj ∈ V , SC chooses a random polynomial POutj such that POutj (i)
= si,j for i ∈ I ′.

11. For Outi,j , i ∈ [10k(�logn�+ 1)] \ I ′, 1 ≤ j ≤ maxS SC computes a random
encryption of POutj (i).

12. SC commits to the shares of its inputs and sends the output computed above
to AC .

13. SC simulates a run of the HEPKPV protocol with the committed inputs
from above using the simulator for the HEPKPV protocol.

14. SC simulates a run of the Coin-Tossing protocol to ensure the outcome is
the set I ′ = JR using the simulator for the Coin-Tossing protocol.

15. SC plays the role of the honest Server in the Preprocessing Verification pro-
tocol to prove the preprocessing was done correctly.

16. SC plays the role of the honest Server in the the Cut-and-Choose protocol
to prove output was calculated correctly.
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4.2 Sender-Side Simulator

We now consider the case in which the Sender is corrupted and the Receiver is
honest.

Let AS be a non-uniform probabilistic polynomial-time real adversary that con-
trols the Server. We construct a non-uniform probabilistic expected polynomial-
time ideal model adversary simulator SS .

The idea behind how SS works is that it plays the role of the Honest Client
using dummy inputs: For the coefficients of the polynomial P , it sends n random
encryptions of 0. Then, instead of playing the role of the prover in the zero
knowledge proof of knowledge for the validity and knowledge of the coefficients
of P , it invokes the Simulator for the HEPKPV protocol. In the second stage,
SS uses the extractability property of the HEPKPV to obtain the inputs of the
Malicious Server from the Share Commitment Protocol. After obtaining all the
input commitments and output from the Server, SS continues to play the role of
the Honest Client in the coin-tossing protocol to choose a random subset for the
cut-and-choose test. If the Malicious Server passes the cut-and-choose test, then
the inputs extracted earlier are submitted to the Trusted Party, otherwise the
Simulator aborts (as the Honest Client does). The cut-and-choose test ensures
that most of the shares of the output generated by the Malicious Server are
consistent with the input extracted previously. Additionally, the honest Client
in the Real Model checks that he has, in fact, received a polynomial. Due to the
properties of the secret-sharing scheme, the above two points ensure that with
all but negligible probability the same (correct) output will be obtained by an
Honest Client in the Real and Ideal model.

We now describe in detail the Simulator for the case of the Malicious Server
and Honest Client

1. SS chooses n random encryptions of 0: c1, . . . cn and sends to Server.
2. SS simulates a run of the HEPKPV protocol with input from above using

the simulator for the HEPKPV protocol.
3. SS extracts the Server’s inputs using the extractor for the HEPKPV proto-

col.
4. AS computes output vi,j for i = 1 to 10k(�logn�+ 1) and j = 1 to |Y | and

sends to Simulator
5. SS plays the part of the Honest Client in the Coin-Tossing protocol.
6. SS and AS run the Cut-and-Choose protocol.
7. SS rewinds AS to the beginning of the Coin-Tossing protocol and re-runs

the protocol with new randomness
8. SS and AS run the Cut-and-Choose protocol.
9. SS repeats the previous two steps until all input indeces from 1 to 10k(�logn�

+ 1) have been opened and the output vi,j has been shown to be computed
correctly.

10. SS submits the previously extracted inputs to the TP.
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4.3 Computation and Communication Complexity

The communication complexity of our protocol is O(mk2 log2 n+kn) encryptions
and the computational complexity is O(mnk log n+mk2 log2 n) exponentiations.

The best known protocols for Set Intersection secure against malicious parties
until now were generic protocols based on Yao’s garbled circuit ([24,25]). Clearly,
the communication complexity of these protocols must at least be the size of the
circuit required for the functionality since all generic two-party protocols that
are known require one party to send a (garbled) circuit for the functionality
being evaluated.

The best known circuit for evaluating the Set Intersection functionality has
size O(m · n), where m and n are the size of the Server and Client’s inputs
respectively, since we must have at least O(m · n) comparisons to compute the
functionality. A secure implementation will require a bit-wise circuit of size at
least O(m · n · k), and this does not even take into account the costly zero-
knowledge techniques that must be employed. Our communication complexity
of O(mk2 log2 n + kn) is much smaller.

Additionally, our protocol accesses the underlying field in a black-box manner.
This is in contrast to an implementation based on a Yao circuit (which must be
binary) that is used in the generic protocols for 2-party computation. Therefore,
our complexity scales much better as the size of the field increases.

Acknowledgment. We thank Stas Jarecki for very helpful discussions.
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