Introduction to Cryptology

Lecture 7
Announcements

• HW2 due today
• HW3 due Thursday, 2/22
Agenda

• Last time:
 – Shannon’s Theorem (K/L 2.4)
 – The Computational Approach (K/L 3.1)
 – Defining computationally secure SKE (K/L 3.2)

• This time:
 – Defining PRG (K/L 3.3)
 – Exercise on PRG
 – Constructing computationally secure SKE (K/L 3.3)
Defining Computationally Secure Encryption

A private-key encryption scheme is a tuple of probabilistic polynomial-time algorithms \((Gen, Enc, Dec)\) such that:

1. The key-generation algorithm \(Gen\) takes as input security parameter \(1^n\) and outputs a key \(k\) denoted \(k \leftarrow Gen(1^n)\). We assume WLOG that \(|k| \geq n\).

2. The encryption algorithm \(Enc\) takes as input a key \(k\) and a message \(m \in \{0,1\}^*\), and outputs a ciphertext \(c\) denoted \(c \leftarrow Enc_k(m)\).

3. The decryption algorithm \(Dec\) takes as input a key \(k\) and ciphertext \(c\) and outputs a message \(m\) denoted by \(m := Dec_k(c)\).

Correctness: For every \(n\), every key \(k \leftarrow Gen(1^n)\), and every \(m \in \{0,1\}^*\), it holds that \(Dec_k(Enc_k(m)) = m\).
Indistinguishability in the presence of an eavesdropper

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

The eavesdropping indistinguishability experiment $PrivK^{eav}_{A,\Pi}(n)$:

1. The adversary A is given input 1^n, and outputs a pair of messages m_0, m_1 of the same length.
2. A key k is generated by running $Gen(1^n)$, and a random bit $b \leftarrow \{0,1\}$ is chosen. A challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
3. Adversary A outputs a bit b'.
4. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. If $PrivK^{eav}_{A,\Pi}(n) = 1$, we say that A succeeded.
Indistinguishability in the presence of an eavesdropper

Definition: A private key encryption scheme \(\Pi = (Gen, Enc, Dec) \) has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries \(A \) there exists a negligible function \(negl \) such that

\[
\Pr \left[PrivK^{eav}_{A, \Pi}(n) = 1 \right] \leq \frac{1}{2} + negl(n),
\]

Where the prob. Is taken over the random coins used by \(A \), as well as the random coins used in the experiment.
Semantic Security

• The full definition of semantic security is even more general.

• Consider arbitrary distributions over plaintext messages and arbitrary external information about the plaintext.
Semantic Security

Definition: A private key encryption scheme \(\Pi = (Gen, Enc, Dec) \) is semantically secure in the presence of an eavesdropper if for every ppt adversary \(A \) there exists a ppt algorithm \(A' \) such that for all efficiently sampleable distributions \(X = (X_1, \ldots,) \) and all poly time computable functions \(f, h \), there exists a negligible function \(negl \) such that

\[
\left| \Pr[A(1^n, Enc_k(m), h(m)) = f(m)] - \Pr[A'(1^n, h(m)) = f(m)] \right| \leq negl(n),
\]

where \(m \) is chosen according to distribution \(X_n \), and the probabilities are taken over choice of \(m \) and the key \(k \), and any random coins used by \(A, A' \), and the encryption process.
Equivalence of Definitions

Theorem: A private-key encryption scheme has indistinguishable encryptions in the presence of an eavesdropper if and only if it is semantically secure in the presence of an eavesdropper.
Pseudorandom Generator

• Functionality
 – Deterministic algorithm G
 – Takes as input a short random seed s
 – Outputs a long string $G(s)$

• Security
 – No efficient algorithm can “distinguish” $G(s)$ from a truly random string r.
 – i.e. passes all “statistical tests.”

• Intuition:
 – Stretches a small amount of true randomness to a larger amount of pseudorandomness.

• Why is this useful?
 – We will see that pseudorandom generators will allow us to beat the Shannon bound of $|K| \geq |M|$.
 – i.e. we will build a computationally secure encryption scheme with $|K| < |M|$
Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

1. (Expansion:) For every n it holds that $\ell(n) > n$.
2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function negl such that:

$$\left| \Pr[D(r) = 1] - \Pr[D(G(s)) = 1] \right| \leq \text{negl}(n),$$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.
Constructing Secure Encryption Schemes
A Secure Fixed-Length Encryption Scheme
The Encryption Scheme

Let G be a pseudorandom generator with expansion factor ℓ. Define a private-key encryption scheme for messages of length ℓ as follows:

- **Gen**: on input 1^n, choose $k \leftarrow \{0,1\}^n$ uniformly at random and output it as the key.
- **Enc**: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, output the ciphertext $c := G(k) \oplus m$.
- **Dec**: on input a key $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{\ell(n)}$, output the plaintext message $m := G(k) \oplus c$.
Theorem: If G is a pseudorandom generator, then the Construction above is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.