1. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M and every $c_0, c_1 \in C$ we have $Pr[C = c_0] = Pr[C = c_1]$. False. Given encryption scheme (Gen, Enc, Dec), construct scheme (Gen, Enc', Dec'). This is exactly the same except Enc appends a 0 to its output with prob $1/4$ and a 1 with prob $3/4$. Dec' ignores the final bit. Note that if (Gen, Enc, Dec) is perfectly secret, so is (Gen, Enc', Dec'). But now choose any $c \in C$ (when C is ciphertext space of (Gen, Enc, Dec)). Then we have $Pr[C = c \mid 0] < Pr[C = c \mid 1].$

2. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M, every $m, m' \in M$ and every $c \in C$ we have $Pr[M = m \mid C = c] = Pr[M = m' \mid C = c]$. False. Given any perfectly secret encryption scheme, we will choose a distribution over Ω, and m, m', c s.t. $Pr[M = m \mid C = c] \neq Pr[M = m' \mid C = c]$. This refutes the above. Let's choose a distribution over Ω that sets $Pr[M = m] > Pr[M = m']$ for some m, m'. Now by Def 1 of perfect secrecy, $\forall c$ $Pr[M = m \mid C = c] = Pr[M = m]$ and $Pr[M = m' \mid C = c] = Pr[M = m']$. So $Pr[M = m \mid C = c] < Pr[M = m] = Pr[M = m' \mid C = c]$. So $Pr[M = m \mid C = c] \neq Pr[M = m' \mid C = c]$.