Announcements

• HW1 due on Thursday, 2/8
• Discrete Math Readings/Quizzes on Canvas due on Tuesday, 2/13
• Class exercises from 2/1 will be returned at end of class
Agenda

• Last time:
 – Frequency Analysis (K/L 1.3)
 – Background and terminology

• This time:
 – Formal definition of symmetric key encryption (K/L 2.1)
 – Definition of information-theoretic security (K/L 2.1)
 – Variations on the definition and proofs of equivalence
 (K/L 2.1)
 – Class Exercise
Formally Defining a Symmetric Key Encryption Scheme
Syntax

• An encryption scheme is defined by three algorithms
 – Gen, Enc, Dec
• Specification of message space M with $|M| > 1$.
• Key-generation algorithm Gen:
 – Probabilistic algorithm
 – Outputs a key k according to some distribution.
 – Keyspace K is the set of all possible keys
• Encryption algorithm Enc:
 – Takes as input key $k \in K$, message $m \in M$
 – Encryption algorithm may be probabilistic
 – Outputs ciphertext $c \leftarrow Enc_k(m)$
 – Ciphertext space C is the set of all possible ciphertexts
• Decryption algorithm Dec:
 – Takes as input key $k \in K$, ciphertext $c \in C$
 – Decryption is deterministic
 – Outputs message $m := Dec_k(c)$
Distributions over K, M, C

• Distribution over K is defined by running Gen and taking the output.
 – For $k \in K$, $\Pr[K = k]$ denotes the prob that the key output by Gen is equal to k.

• For $m \in M$, $\Pr[M = m]$ denotes the prob. That the message is equal to m.
 – Models a priori knowledge of adversary about the message.
 – E.g. Message is English text.

• Distributions over K and M are independent.

• For $c \in C$, $\Pr[C = c]$ denotes the probability that the ciphertext is c.
 – Given Enc, distribution over C is fully determined by the distributions over K and M.
Definition of Perfect Secrecy

• An encryption scheme \((Gen, Enc, Dec)\) over a message space \(M\) is perfectly secret if for every probability distribution over \(M\), every message \(m \in M\), and every ciphertext \(c \in C\) for which \(\Pr[C = c] > 0\):
 \[
 \Pr[M = m \mid C = c] = \Pr[M = m].
 \]
An Equivalent Formulation

• Lemma: An encryption scheme \((\mathit{Gen}, \mathit{Enc}, \mathit{Dec})\) over a message space \(\mathcal{M}\) is perfectly secret if and only if for every probability distribution over \(\mathcal{M}\), every message \(m \in \mathcal{M}\), and every ciphertext \(c \in \mathcal{C}\):
 \[
 \Pr[c | M = m] = \Pr[C = c].
 \]
Basic Logic

• Usually want to prove statements like $P \rightarrow Q$ (“if P then Q”)

• To prove a statement $P \rightarrow Q$ we may:
 – Assume P is true and show that Q is true.
 – Prove the contrapositive: Assume that Q is false and show that P is false.
Basic Logic

• Consider a statement $P \leftrightarrow Q \ (P \text{ if and only if } Q)$
 – Ex: Two events X, Y are independent if and only if $\Pr[X \land Y] = \Pr[X] \cdot \Pr[Y]$.

• To prove a statement $P \leftrightarrow Q$ it is sufficient to prove:
 – $P \rightarrow Q$
 – $Q \rightarrow P$
Proof (Preliminaries)

• Recall Bayes’ Theorem:

 \[\Pr[A \mid B] = \frac{\Pr[B \mid A] \cdot \Pr[A]}{\Pr[B]} \]

• We will use it in the following way:

 \[\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]} \]
Proof

Proof: →

• To prove: If an encryption scheme is perfectly secret then

"for every probability distribution over M, every message $m \in M$, and every ciphertext $c \in C$:

$\Pr[C = c \mid M = m] = \Pr[C = c]$. "
Proof (cont’d)

• Fix some probability distribution over M, some message $m \in M$, and some ciphertext $c \in C$.

• By perfect secrecy we have that
 \[
 \Pr[M = m \mid C = c] = \Pr[M = m].
 \]

• By Bayes’ Theorem we have that:
 \[
 \Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]} = \Pr[M = m].
 \]

• Rearranging terms we have:
 \[
 \Pr[C = c \mid M = m] = \Pr[C = c].
 \]
Perfect Indistinguishability

• Lemma: An encryption scheme (Gen, Enc, Dec) over a message space M is perfectly secret if and only if for every probability distribution over M, every $m_0, m_1 \in M$, and every ciphertext $c \in C$: $\Pr[C = c \mid M = m_0] = \Pr[C = c \mid M = m_1]$.
Proof (Preliminaries)

- Let F, E_1, \ldots, E_n be events such that $\Pr[E_1 \lor \cdots \lor E_n] = 1$ and $\Pr[E_i \land E_j] = 0$ for all $i \neq j$.

- The E_i partition the space of all possible events so that with probability 1 exactly one of the events E_i occurs. Then
 \begin{equation}
 \Pr[F] = \sum_{i=1}^{n} \Pr[F \land E_i]
 \end{equation}
Proof Preliminaries

• We will use the above in the following way:
• For each $m_i \in M$, E_{m_i} is the event that $M = m_i$.
• F is the event that $C = c$.
• Note $\Pr[E_{m_1} \lor \cdots \lor E_{m_n}] = 1$ and $\Pr[E_{m_i} \land E_{m_j}] = 0$ for all $i \neq j$.
• So we have:

 $-$ $\Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m]$

 $= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]$
Proof

Proof:→

Assume the encryption scheme is perfectly secret. Fix messages $m_0, m_1 \in M$ and ciphertext $c \in C$.

$$\text{Pr}[C = c | M = m_0] = \text{Pr}[C = c] = \text{Pr}[C = c | M = m_1]$$
Proof

Proof ←

• Assume that for every probability distribution over M, every $m_0, m_1 \in M$, and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$:
 \[
 \Pr[C = c \mid M = m_0] = \Pr[C = c \mid M = m_1].
 \]

• Fix some distribution over M, and arbitrary $m_0 \in M$ and $c \in C$.
• Define $p = \Pr[C = c \mid M = m_0]$.
• Note that for all m:
 \[
 \Pr[C = c \mid M = m] = \Pr[C = c \mid M = m_0] = p.
 \]
Proof

• \(\Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m] \)

\[
= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]
\]

\[
= \sum_{m \in M} p \cdot \Pr[M = m]
\]

\[
= p \cdot \sum_{m \in M} \Pr[M = m]
\]

\[
= p
\]

\[
= \Pr[C = c | M = m_0]
\]

Since \(m \) was arbitrary, we have shown that \(\Pr[C = c] = \Pr[C = c | M = m] \) for all \(c \in C, m \in M \).

So we conclude that the scheme is perfectly secret.