Introduction to Cryptology

Lecture 24
Announcements

• HW 10 due on 5/10
• Scholarly Paper EC due on 5/10
Agenda

• Last time:
 – Public Key Encryption (11.3)
 – El Gamal Encryption (11.4)
 – RSA Encryption and Weaknesses (11.5)

• This time:
 – Digital Signatures Definitions (12.2-12.3)
 – RSA Signatures (12.4)
 – Dlog-based signatures (12.5)
CONSTRUCTION 11.29
Let GenRSA be as before, and let \(\ell \) be a function with \(\ell(n) \leq 2n - 4 \) for all \(n \). Define a public-key encryption scheme as follows:

- **Gen:** on input \(1^n \), run GenRSA\((1^n) \) to obtain \((N, e, d)\). Output the public key \(pk = (N, e) \), and the private key \(sk = (N, d) \).

- **Enc:** on input a public key \(pk = (N, e) \) and a message \(m \in \{0, 1\}^{\|N\| - \ell(n) - 2} \), choose a random string \(r \leftarrow \{0, 1\}^{\ell(n)} \) and interpret \(\hat{m} := 1\|r\|m \) as an element of \(\mathbb{Z}_N^* \). Output the ciphertext \(c := [\hat{m}^e \mod N] \).

- **Dec:** on input a private key \(sk = (N, d) \) and a ciphertext \(c \in \mathbb{Z}_N^* \), compute \(\hat{m} := [c^d \mod N] \), and output the \(\|N\| - \ell(n) - 2 \) least-significant bits of \(\hat{m} \).

The padded RSA encryption scheme.
Digital Signatures Definition

A digital signature scheme consists of three ppt algorithms $(Gen, Sign, Vrfy)$ such that:

1. The key-generation algorithm Gen takes as input a security parameter 1^n and outputs a pair of keys (pk, sk). We assume that pk, sk each have length at least n, and that n can be determined from pk or sk.

2. The signing algorithm $Sign$ takes as input a private key sk and a message m from some message space (that may depend on pk). It outputs a signature σ, and we write this as $\sigma \leftarrow Sign_{sk}(m)$.

3. The deterministic verification algorithm $Vrfy$ takes as input a public key pk, a message m, and a signature σ. It outputs a bit b, with $b = 1$ meaning valid and $b = 0$ meaning invalid. We write this as $b := Vrfy_{pk}(m, \sigma)$.

Correctness: It is required that except with negligible probability over (pk, sk) output by $Gen(1^n)$, it holds that $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$ for every message m.
Digital Signatures Definition: Security

Experiment $\text{SigForge}_{A,\Pi}(n)$:

1. $\text{Gen}(1^n)$ is run to obtain keys (pk, sk).
2. Adversary A is given pk and access to an oracle $\text{Sign}_{sk}(\cdot)$. The adversary then outputs (m, σ). Let Q denote the set of all queries that A asked to its oracle.
3. A succeeds if and only if
 1. $\text{Vrfy}_{pk}(m, \sigma) = 1$
 2. $m \notin Q$.

In this case the output of the experiment is defined to be 1.

Definition: A signature scheme $\Pi = (\text{Gen}, \text{Sign}, \text{Vrfy})$ is existentially unforgeable under an adaptive chosen-message attack, if for all ppt adversaries A, there is a negligible function neg such that:

$$\Pr[\text{SigForge}_{A,\Pi}(n) = 1] \leq \text{neg}(n).$$
RSA Signatures

CONSTRUCTION 12.5

Let GenRSA be as in the text. Define a signature scheme as follows:

- **Gen**: on input 1^n run GenRSA(1^n) to obtain (N, e, d). The public key is (N, e) and the private key is (N, d).

- **Sign**: on input a private key $sk = (N, d)$ and a message $m \in \mathbb{Z}_N^*$, compute the signature

\[\sigma := [m^d \mod N]. \]

- **Vrfy**: on input a public key $pk = (N, e)$, a message $m \in \mathbb{Z}_N^*$, and a signature $\sigma \in \mathbb{Z}_N^*$, output 1 if and only if

\[m \overset{?}{=} [\sigma^e \mod N]. \]

The plain RSA signature scheme.
Attacks

No message attack:

Choose $s \in \mathbb{Z}_N^*$, compute s^e.
Output $(m = s^e, \sigma = s)$ as the forgery.
For forging a signature on an arbitrary message:

To forge a signature on message \(m \), choose arbitrary \(m_1, m_2 \neq 1 \) such that \(m = m_1 \cdot m_2 \).
Query oracle for \((m_1, \sigma_1), (m_2, \sigma_2)\).
Output \((m, \sigma)\), where \(\sigma = \sigma_1 \cdot \sigma_2 \).
CONSTRUCTION 12.6

Let GenRSA be as in the previous sections, and construct a signature scheme as follows:

- **Gen**: on input 1^n, run GenRSA(1^n) to compute (N, e, d). The public key is $\langle N, e \rangle$ and the private key is $\langle N, d \rangle$.

 As part of key generation, a function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_N^*$ is specified, but we leave this implicit.

- **Sign**: on input a private key $\langle N, d \rangle$ and a message $m \in \{0, 1\}^*$, compute

 $$\sigma := [H(m)^d \mod N].$$

- **Vrfy**: on input a public key $\langle N, e \rangle$, a message m, and a signature σ, output 1 if and only if $\sigma^e \overset{?}{=} H(m) \mod N$.

The RSA-FDH signature scheme.
Random Oracles

• Assume certain hash functions behave exactly like a random oracle.
• The “oracle” is a box that takes a binary string as input and returns a binary string as output.
• The internal workings of the box are unknown.
• All parties (honest parties and adversary) have access to the box.
• The box is consistent.
• Oracle implements a random function by choosing values of $H(x)$ “on the fly.”
Principles of RO Model

1. If x has not been queried to H, then the value of $H(x)$ is uniform.
2. If A queries x to H, the reduction can see this query and learn x.
3. The reduction can set the value of $H(x)$ to a value of its choice, as long as this value is correctly distributed, i.e., uniform.
Security of RSA-FDH

Theorem: If the RSA problem is hard relative to GenRSA and H is modeled as a random oracle, then the construction above is secure.
• Uses an instantiation of RSA-FDH for signing.
• SHA-1 should not be used “off-the-shelf” as an instantiation of H because output length is too small and so practical short-message attacks apply.
• In PKCS #1 v2.1, H is constructed via repeated application of an underlying cryptographic hash function.