Announcements

• HW4 due today
• Optional HW5 up on course webpage, due 3/13
• Midterm coming up in class on 3/15
• Midterm Review Sheet up on course webpage
• There will be a cheat sheet on the midterm. Cheat sheet will be posted on Canvas.
Agenda

• Last time:
 – Block Ciphers (K/L 3.5)
 – Modes of Operation (K/L 3.6)
 – Started MAC (K/L 4.2)

• This time:
 – Security Definition for MAC (K/L 4.2)
 – Constructing MAC from PRF (K/L 4.3)
 – Domain Extension for MACs (K/L 4.4)
Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms $(Gen, Mac, Vrfy)$ such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^n and outputs a key k with $|k| \geq n$.
2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t.
 \[t \leftarrow Mac_k(m). \]
3. The deterministic verification algorithm $Vrfy$ takes as input a key k, a message m, and a tag t. It outputs a bit b with $b = 1$ meaning valid and $b = 0$ meaning invalid.
 \[b := Vrfy_k(m, t). \]

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.
Security of MACs

The message authentication experiment $MAC_{\text{forge}}_{A, \Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
3. A succeeds if and only if (1) $Vrfy_k(m, t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.
Security of MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[MAC_{forge_A,\Pi}(n) = 1] \leq neg(n).$$
Strong MACs

The strong message authentication experiment $MAC_{\text{forge}}_{A,\Pi}(n)$:

1. A key k is generated by running $Gen(1^n)$.
2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.
3. A succeeds if and only if (1) $Vrfy_k(m, t) = 1$ and (2) $(m, t) \notin Q$. In that case, the output of the experiment is defined to be 1.
Strong MACs

Definition: A message authentication code \(\Pi = (Gen, Mac, Vrfy) \) is a strong MAC if for all probabilistic polynomial-time adversaries \(A \), there is a negligible function \(neg \) such that:

\[
Pr[MACsforge_{A,\Pi}(n) = 1] \leq neg(n).
\]
Constructing Secure Message Authentication Codes
A Fixed-Length MAC

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

- **Mac**: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t := F_k(m)$.

- **Vrfy**: on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output 1 if and only if $t = F_k(m)$.
Security Analysis

Theorem: If F is a pseudorandom function, then the construction above is a secure fixed-length MAC for messages of length n.

Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRF.

Distinguisher D:

1. When A queries its oracle with message m, output $O(m)$.
2. Eventually, A outputs (m^*, t^*) where $m^*, t^* \in \{0,1\}^n$.
3. If $m^* \in Q$, output 0.
4. If $m^* \notin Q$, query $O(m^*)$ to obtain output z^*.
5. If $t^* = z^*$ output 1. Otherwise, output 0.
Security Analysis

Consider the probability D outputs 1 in the case that O is truly random function f vs. O is a pseudorandom function F_k.

- When O is pseudorandom, D outputs 1 with probability $\Pr[MAC\text{forge}_{A,\Pi}(n) = 1] = \rho(n)$, where ρ is non-negligible.
- When O is random, D outputs 1 with probability at most $\frac{1}{2^n}$. Why?
Security Analysis

D’s distinguishing probability is:

$$\left| \frac{1}{2^n} - \rho(n) \right| = \rho(n) - \frac{1}{2^n}.$$

Since, $\frac{1}{2^n}$ is negligible and $\rho(n)$ is non-negligible, $\rho(n) - \frac{1}{2^n}$ is non-negligible.

This is a contradiction to the security of the PRF.
Domain Extension for MACs
Let F be a pseudorandom function, and fix a length function ℓ. The basic CBC-MAC construction is as follows:

- **Mac**: on input a key $k \in \{0,1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following:
 1. Parse m as $m = m_1, \ldots, m_\ell$ where each m_i is of length n.
 2. Set $t_0 := 0^n$. Then, for $i = 1$ to ℓ:
 - Set $t_i := F_k(t_{i-1} \oplus m_i)$.
 Output t_ℓ as the tag.

- **Vrfy**: on input a key $k \in \{0,1\}^n$, a message m, and a tag t, do: If m is not of length $\ell(n) \cdot n$ then output 0. Otherwise, output 1 if and only if $t = Mac_k(m)$.
CBC-MAC

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).