
Overview

Some Attacks on Merkle-Damg̊ard Hashes

John Kelsey, NIST and KU Leuven

May 8, 2018

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

Introduction 1 / 63

Overview

I Cryptographic Hash Functions

I Thinking About Collisions

I Merkle-Damg̊ard hashing

I Joux Multicollisions[2004]

I Long-Message Second Preimage Attacks[1999,2004]

I Herding and the Nostradamus Attack[2005]

Introduction 2 / 63

Why Talk About These Results?

I These are very visual results–looking at the diagram often
explains the idea.

I The results are pretty accessible.

I Help you think about what’s going on inside hashing
constructions.

Introduction 3 / 63

Part I: Preliminaries/Review

I Hash function basics

I Thinking about collisions

I Merkle-Damg̊ard hash functions

Introduction 4 / 63

Cryptographic Hash Functions

I Today, they’re the workhorse of crypto.
I Originally: Needed for digital signatures

I You can’t sign 100 MB message–need to sign something short.
I “Message fingerprint” or “message digest”
I Need a way to condense long message to short string.

I We need a stand-in for the original message.

I Take a long, variable-length message...

I ...and map it to a short string (say, 128, 256, or 512 bits).

Cryptographic Hash Functions 5 / 63

Properties

What do we need from a hash function?

I Collision resistance

I Preimage resistance

I Second preimage resistance

I Many other properties may be important for other applications

Note: cryptographic hash functions are designed to behave
randomly.

Cryptographic Hash Functions 6 / 63

Collision Resistance

The core property we need.

I Can’t find X 6= Y such that HASH(X) = HASH(Y)
I Note, there must be huge numbers of collisions...

I How many million-bit strings are there?
I Way more than number of 256-bit strings.

I ...but it’s very hard to find them.

I Ideally, best way to find collisions is trying lots of messages

I ...until a pair of outputs happen to collide by chance.

Cryptographic Hash Functions 7 / 63

Preimage and Second Preimage Resistance

What other properties do we need from a hash function?
I Preimage resistance

I Given H, can’t find X such that H = HASH(X)

I Second preimage resistance
I Given X , can’t find Y such that HASH(X) = HASH(Y).
I Like finding a collision, but harder–you already have a target

message.

Cryptographic Hash Functions 8 / 63

Generic Attacks

For any hash function, we have these generic attacks:

I Collision with 2n/2 tries.

I Preimages and second preimages with 2n tries.

If hash function behaves randomly, these are the best we can do.

Cryptographic Hash Functions 9 / 63

Other Properties

Where else are hashes used?
I Over time, hash functions became workhorses, used in many

places:
I Message authentication (HMAC)
I Key derivation functions
I Password hashing
I Cryptographic PRNGs (HashDRBG, FIPS186 PRNG)
I Hashing data for commitments
I Proofs of work

I These applications often require other properties.

Cryptographic Hash Functions 10 / 63

Thinking About Collisions

2k

n-bit
random
values

Expect
collision
when
2k = n

2a

n-bit
random
values

2b

n-bit
random
values

expect
one
collision
when
a+b=n

Digression: Thinking About Collisions 11 / 63

Collisions in a List

Suppose we have a list of 2k random n-bit numbers.
How many collisions can we expect?

2k

n-bit
random
values

Expect
collision
when
2k = n

I
(2k

2

)
≈ 22k−1 pairs of random values.

I Each pair has probability 2−n to collide.

I So we expect about 22k−n−1 collisions.

Digression: Thinking About Collisions 12 / 63

Matching Between Two Lists

Suppose we have two lists of random n-bit numbers.
How many collisions can we expect?

2a

n-bit
random
values

2b

n-bit
random
values

expect
one
collision
when
a+b=n

I 2a+b pairs of random values.

I Each pair has probability 2−n to collide.

I So we expect about 2a+b−n collisions.

Digression: Thinking About Collisions 13 / 63

Merkle-Damg̊ard

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

iv h
0

m
0 h

1

m
1 h

2

m
2 h

final

m
3
||10*L

Figure: Two Different Ways to Represent Merkle-Damg̊ard Hashing

Merkle-Damg̊ard Hashes 14 / 63

How to Make a Good Hash Function?

I We needed to be able to build good hash functions
I Collision resistance, second preimage resistance, preimage

resistance

I About the only thing anyone knew how to build were block
ciphers.

I Merkle and Damg̊ard independently worked out a strategy

I ...that was wildly successful.

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

Merkle-Damg̊ard Hashes 15 / 63

Merkle-Damg̊ard Hashes (1)

Big idea: Make a good fixed-length hash function, then build a
variable-length hash from it.

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

I We need a fixed-length compression function, F (h,m)
I hin = hash chaining value, n bits. (Example n = 256)
I hout = hash chaining value, n bits.
I m = message block, w bits. (Example w = 512)

I Pad the message, break into w -bit chunks, and process
sequentially.

Merkle-Damg̊ard Hashes 16 / 63

Merkle-Damg̊ard Hashes (2)

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

1. Pad message to integer multiple of w bits:
I 10* padding
I ...plus length of unpadded message (Merkle-Damg̊ard

strengthening)

2. Break padded message into blocks m0,1,2,...,k−1.

3. h−1 = some fixed initial value, iv .

4. hi ← F (hi−1,mi) for i = 0, 1, 2, . . . , k − 1.

5. Final hi is HASH(M)

Merkle-Damg̊ard Hashes 17 / 63

This strategy was wildly successful!

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

I Merkle-Damg̊ard construction lets you worry about security of
compression function

I ...let construction take care of whole hash function.
I Almost all hashes for next 20+ years used Merkle-Damg̊ard

construction!
I MD4, MD5
I SHA0, SHA1, SHA256, SHA512
I RIPE-MD, RIPE-MD160, Haval
I Snefru,Tiger, Whirlpool

Merkle-Damg̊ard Hashes 18 / 63

Part II: Surprising Properties of Merkle-Damg̊ard Hashes

I Joux multicollisions

I Long-message second preimage attacks

I Herding attacks

Merkle-Damg̊ard Hashes 19 / 63

Joux Multicollisions

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

Joux Multicollisions 20 / 63

Joux’ Multicollision Result

I In 2004, Joux published a new attack on Merkle-Damg̊ard
hashes.

I ...showing that we hadn’t really understood them despite 20+
years of work.

I He showed that:
I Finding 230 values with the same hash for an Merkle-Damg̊ard

hash...
I ...takes only about 30 times the work of finding one collision!
I Concatenating two Merkle-Damg̊ard hashes doesn’t give much

extra security.

I Joux’s work was the basis for the other results I’ll talk about
today.

Joux Multicollisions 21 / 63

A Property of Merkle-Damg̊ard Hashes

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

I hk contains everything HASH will ever know about m0,1,2,...,k−1

I This is necessary for HASH to be efficient
I HASH needs to process the data in one pass.

I But it has some surprising consequences....

Joux Multicollisions 22 / 63

Notation

This is an equivalent way to show Merkle-Damg̊ard hashing.

iv h
0

m
0 h

1

m
1 h

2

m
2 h

final

m
3
||10*L

Figure: A Different Way to Represent Merkle-Damg̊ard Hashing

I The nodes are hash chaining values

I The edges are message blocks

I This is useful for thinking about Joux Multicollisions

Joux Multicollisions 23 / 63

Constructing a Joux Multicollision

We can concatenate collisions!

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

1. Find colliding pair from iv : (m0,m
∗
0)→ h1.

2. Find colliding pair from h0: (m1,m
∗
1)→ h2.

3. Find colliding pair from h1: (m2,m
∗
2)→ h3.

4. Find colliding pair from h2: (m3,m
∗
3)→ h4.

Four collision searches, work ≈ 4× 2n/2

How many different values have we found that all hash to h4?

Joux Multicollisions 24 / 63

Each Path = Different Message (All with Same Hash)

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

Joux Multicollisions 25 / 63

Joux Multicollisions: Work

h
1

iv

m
0

m*

0

h
2

m
1

m*

1

h
3

m
2

m*

2

h
4

m
3

m*

3

I k collision-searches → 2k values all with same hash

k choices in the path = 2k total paths.

I A 2k -multicollision
I An ideal hash function would not have this property.

I It should be incredibly hard to find a 232-way multicollision.

I This was a huge surprise...but it was only the beginning!

Joux Multicollisions 26 / 63

The Long-Message Second Preimage Attack

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
t

m
t

...

F

m
link

iv

...
F h

final

m
k
||10*L

Expandable Message h
X

Now lengths
agree!

Stretch to cover gap!

Long-Message Second Preimage Attack 27 / 63

The Long-Message Second Preimage Attack: Setting

iv h
0

m
0 h

1

m
1

h
2

m
2 h

3

m
3

h
4

m
4

h
target

m
k-1
||10*L...

1. We are given a very long target message, Mtarget.

k = 2` blocks long.
Example: 255-block (about 264 bit) message for SHA1.

2. We want to find a new message Msecond such that:

Msecond 6= Mtarget

HASH(Msecond) = HASH(Mtarget)

.

3. This is expected cost about 2n work.

Just like a preimage attack.

Long-Message Second Preimage Attack 28 / 63

An Attack that ALMOST Works

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
t

m
t

...

F

m
link

iv

...
F h

target

m
k
||10*L

We try MANY values of m
link

till we match ANY h
t

1 Try lots of values for mlink.

2 After 2n−` tries, expect to hit some intermediate hash.

Long-Message Second Preimage Attack 29 / 63

Blocked By the Length in the Padding!

Fiv h
0

m
0

F h
1

m
1

F h
t

m
t

...

F

m
link

iv

...
F h

target

m
k
||10*L

Fiv h
0

F h
1

F h
2

F h
t

...

F

m
link

iv

...
F h

final

Expandable Message h
X

h
t

...
F

m
k
||10*L

h
changed

h
k-1

h
k-1

Length
changed!

3 ...but our new message is the wrong length!

Everything is fine until the final compression function...
...then L changes, and so does hfinal.

Winternitz had proposed this attack on some earlier hash
constructions.

Long-Message Second Preimage Attack 30 / 63

What We Need: An Expandable Message

iv Expandable
Message h

X

a few blocks

iv Expandable
Message h

X

lots and lots of blocks

Note: Same chaining
value output

We need a new tool–an expandable message.

I Set of messages that can take on wide range of possible
lengths...

I ...but always has the same intermediate hash at the end

Note: this is an intermediate hash, so Merkle-Damg̊ard
strengthening hasn’t touched it yet.

I We can stretch this message to many different lengths.

Long-Message Second Preimage Attack 31 / 63

How Would an Expandable Message Help?

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
t

m
t

...

F

m
link

iv

...
F h

final

m
k
||10*L

Expandable
Message

h
X

Try MANY linking messages
to hit ANY h

t

Note: lengths
still different

I As before, we compute our linking message...

Long-Message Second Preimage Attack 32 / 63

Make the Lengths Agree!

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
t

m
t

...

F

m
link

iv

...
F h

final

m
k
||10*L

Expandable Message h
X

Now lengths
agree!

Stretch to cover gap!

I But now we can make the lengths agree

I ...bypassing the length in the final block’s padding!

So if we could find expandable messages, we could find second
preimages on long messages.

Long-Message Second Preimage Attack 33 / 63

Detour: Fixed Points

F

m
fp

h
fixed

I A fixed point is a value for which some function gives its input
as its output.

I In this case, there’s some hfixed ,mfp such that

hfixed = F (hfixed ,mfp)

Long-Message Second Preimage Attack 34 / 63

Common Way of Making Compression Functions:
Davies-Meyer

E

m

h
in

+ h
out

This should be hard, but....

F (h,m) = Em(h)⊕ h

To find a fixed point, choose any m and compute

h = Dm(0)

Em(h) = 0

F (h,m) = Em(h)⊕ h

= 0⊕ h

= h
Long-Message Second Preimage Attack 35 / 63

Expandable Message from Fixed Points [Dean 99]

F

m
fp

h
fixed

F

m
fp

h
fixed

F

m
fp

h
fixed

h
fixed

F

m
start

iv

Expandable Message

...

F

m
start

iv 2n/2

reachable
hash
values

.

.

.

Try 2n/2

values
of m

start

F

m
fp

h
fixed

2n/2

fixed
point
hash

values

expect
one
collision

Try 2n/2

values
of m

fp

1. Generate 2n/2 random fixed point hashes.

2. Generate 2n/2 random starting messages.

3. Expect one collision.

4. Expandable message = mstart ‖ mfp

5. Expected work to construct: 2n/2+1.

Dean discovered this in 1999, in his PhD thesis–but nobody knew
about it!
(We rediscovered it in 2004!)

Long-Message Second Preimage Attack 36 / 63

The Expandable Message

Expandable Message

F

m
fp

h
fixed

h
fixed

F

m
start

iv

I The minimum length is two message blocks.

I It can expand to any length.

Long-Message Second Preimage Attack 37 / 63

Stretching the Expandable Message

F

m
fp

h
fixed

F

m
fp

h
fixed

F

m
fp

h
fixed

F

m
start

iv

Expandable Message

...

Repeat as many
times as needed

Figure: Stretching Expandable Message By Repeating mfp

I Once we have expandable message, it’s trivial to stretch it...

I ...just repeat mfp as many times as needed.

Long-Message Second Preimage Attack 38 / 63

Expandable Messages from Fixed Points: Work

Expandable Message

F

m
fp

h
fixed

h
fixed

F

m
start

iv

I Depends on compression function–not all Merkle-Damg̊ard
hashes have easy-to-find fixed points.

I ...but this works for MD5, SHA1, SHA2

I Work to construct: 2n/2+1

Long-Message Second Preimage Attack 39 / 63

Expandable Messages From Joux Multicollisions

h
1

iv

m
0

(1)

(2)
aa

h
2

m
1

(1)

(3)
bbb

h
3

h
4

m
2

(1)

m
3

(1)

 (5)
ccccc

 (9)
ddddddddd

+1 +2 +4 +8

Component

Figure: Expandable Messages from Joux Multicollisions

I We discovered these in 2004.
(Lucky for us, or Dean would have totally scooped us!)

I These always work for any Merkle-Damg̊ard hash.
I Consists of many components (collisions)
I Each component:

I Costs 2n/2 to build.
I Doubles number of possible lengths of expanded message.

Long-Message Second Preimage Attack 40 / 63

How It Works: Minimum Length

h
1

iv

m
0

(1)

(2)
aa

h
2

m
1

(1)

(3)
bbb

h
3

h
4

m
2

(1)

m
3

(1)

 (5)
ccccc

 (9)
ddddddddd

+1 +2 +4 +8

Figure: Expandable Message at Shortest Length: 4 Blocks

I We choose a length by choosing a path through the
multicollision.

I Each component has two paths that differ in length by a
power of 2.

I Result: With k components, length from k to k + 2k blocks.

Long-Message Second Preimage Attack 41 / 63

How It Works: Choosing a Length

h
1

iv

m
0

(1)

(2)
aa

h
2

m
1

(1)

(3)
bbb

h
3

h
4

m
2

(1)

m
3

(1)

 (5)
ccccc

 (9)
ddddddddd

+1 +2 +4 +8

Figure: Message Expanded to 13 Blocks

I By choosing a different path, we can add blocks to the length
of the message.

I In this case, we chose a length of 13 blocks.

Long-Message Second Preimage Attack 42 / 63

Now We Have Expandable Messages

iv Expandable
Message h

X

a few blocks

iv Expandable
Message h

X

lots and lots of blocks

Note: Same chaining
value output

I Fixed-point expandable messages
I Cheaper to build, but don’t always work.

I Joux-multicollision based expandable messages.
I More expensive to build, but work for all Merkle-Damg̊ard

hashes.

...so we can carry out long-message second preimage attacks!

Long-Message Second Preimage Attack 43 / 63

The Long-Message Second Preimage Attack

iv h
0

m
0 h

1

m
1

h
2

m
2 h

3

m
3

h
4

m
4

h
target

m
k-1
||10*L...

Given: Target message Mtarget of k = 2` blocks.
Steps:

1 Construct expandable message with length up to k blocks.

2 Find linking message to any intermediate hash for Mtarget.

3 Expand message to cover skipped-over message blocks.

Total cost = expandable message + linking message.

Long-Message Second Preimage Attack 44 / 63

Step One: Build Expandable Message

iv Expandable
Message h

X

a few blocks

iv Expandable
Message h

X

lots and lots of blocks

Note: Same chaining
value output

Reminder: Mtarget is 2` blocks long

I For fixed-point expandable messages, 2n/2+1.

I For multicollision expandable messages, `× 2n/2+1

This is almost never the expensive part of the attack.

Long-Message Second Preimage Attack 45 / 63

Step Two: Find Linking Message

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
t

m
t

...

F

m
link

iv

...
F h

final

m
k
||10*L

Expandable
Message

h
X

Try MANY linking messages
to hit ANY h

t

Note: lengths
still different

Reminder: Mtarget is 2` blocks long

I There are about 2` intermediate hash values to hit.

I For n-bit hash output, expect 2n−` tries to get a match.

This is almost always the expensive part of the attack.

Long-Message Second Preimage Attack 46 / 63

Step Three: Stretch Expandable Message to Fix Length

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
t

m
t

...

F

m
link

iv

...
F h

final

m
k
||10*L

Expandable Message h
X

Now lengths
agree!

Stretch to cover gap!

I This costs almost nothing for either type of expandable
message.

I Result: Second message with same hash output as Mtarget.

...and same length as Mtarget.

Long-Message Second Preimage Attack 47 / 63

Total Cost

I Merkle-Damg̊ard hashes have maximum lengths they will
support.

I MD5, SHA1, SHA256: About 255 blocks.
I SHA512: About 2107 blocks.

I Attack gets cheaper (but less practical) for longer messages.

I Second preimage attack on SHA1 with 255-block message:

total cost = expandable message + linking message

= 281 + 2160−55

= 281 + 2105

≈ 2105

Long-Message Second Preimage Attack 48 / 63

Herding Hash Functions and the Nostradamus Attack

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

x
6

h
10

h
11

h
12

h
13

x 13

h
20

h
21

x 21

h
diamond

linking
message

iv P

Herding Attacks 49 / 63

Using Hash Functions to Commit to a Result

I Suppose I claim I can tell the future...

I ...say, I clam I can predict presidential elections or the stock
market.

I How can I prove my prophetic abilities without disclosing my
predictions ahead of time?

I I could publish a HASH of my predictions.

Herding Attacks 50 / 63

Using Hash Functions to Commit to a Result(2)

So how does this work?
I I make my predictions

I Using statistical models, prediction markets, dartboards, and
crystal balls.

I I write them into a document, P.

I I hash the document, H ← HASH(P).

I I publish H so that I can prove I’m a real prophet.

I ...After my predictions have come to pass, I reveal P.

Herding Attacks 51 / 63

Should You Believe I Can Tell the Future?

Suppose I go through this protocol using a somewhat-weak hash
function like MD5.

I Is this evidence I can tell the future?

I What property of the hash function are you relying on?

I It’s not exactly collision-resistance, but maybe not quite
preimage resistance either....

Herding Attacks 52 / 63

The Diamond Structure: A Merkle-Tree Computed by
Finding Collisions.

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamond

I Starting from 2k random hash values, build a hash tree.
I ...by finding collisions.
I Result: A diamond structure that routes 2k input hash

chaining values into one output hash.

Note: Edges have multiple message blocks; nodes are hash
chaining values.

Herding Attacks 53 / 63

Precomputing the Diamond
I claim to predict the outcome of the 2016 presidential election.

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamondiv

Clinton

Bush

Sanders

Cruz

Trump

Rubio

Paul

Carson

I I precompute messages predicting each of eight likely winners.
I Starting from iv , I generate eight prediction strings that are

all the same length.
I Each arrow has multiple message blocks of boilerplate.
I I hash them into a diamond structure.
I I publish hdiamond.

Herding Attacks 54 / 63

Cost to Precompute a Diamond

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamondiv

Clinton

Bush

Sanders

Cruz

Trump

Rubio

Paul

Carson

I For 2k precomputed prediction strings...

I Naive approach: 2k − 1 collision searches.

I ...better approach for big k .

I I can reveal any of my precomputed choices after the election.
I But I have no more flexibility than that.

I Once hdiamond is published, I’m stuck with my predictions.

Herding Attacks 55 / 63

Routing the Diamond

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamondiv

Clinton

Bush

Sanders

Cruz

Trump

Rubio

Paul

Carson

I When I want to “reveal” my prediction, I follow the edges of
the tree.

This costs nothing.

I Each edge has some message blocks that are appended to my
prediction string.

I At the end, can choose any of my precomputed predictions to
reveal!

Herding Attacks 56 / 63

Herding Hash Functions

First, commit to a hash output, hdiamond.
Then, hash any prefix P to hdiamond.

1. Build a random diamond structure with 2k starting hash
values.

2. Commit to hdiamond.

3. Decide what prediction P I want to have made.

4. Find a linking message from P to one of the starting hash
values.

5. Route through the diamond to hdiamond.

Herding Attacks 57 / 63

Building the Random Diamond Structure
h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamond

1. 2k target values.
2. We need big k to make finding the linking message workable.
3. Intuition: We don’t care which values hash together.

I Compute 2n/2 messages from each random target hash value.
I Expect to find enough collisions to get down to next layer of

tree.
I Repeat process until number of intermediate hashes is small

enough to do naive algorithm.
I Expected work is about 2(n+k)/2+2.

Herding Attacks 58 / 63

Finding a Linking Message

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamondiv

linking
message

Try MANY
messages
till we get
a match

P

I With 2k target values, we need about 2n−k work to find a
linking message.

Herding Attacks 59 / 63

Routing Through the Diamond

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

x
6

h
10

h
11

h
12

h
13

x 13

h
20

h
21

x 21

h
diamond

linking
message

iv P

I Once we’ve found the linking message, we can route any
prefix of the expected length to hdiamond.

I Total work: 2n/2+k/2+2 to make the diamond structure, and
2n−k to find a linking message.

Herding Attacks 60 / 63

Refinements: Adding an Expandable Message

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamond

Expandable
Message

h
out

Adding an expandable message to the end of the diamond
structure has two benefits:

I We now have some flexibility in length of P.
I We can hit any of the 2k+1 − 1 total intermediate hashes in

the diamond structure.
I Makes it about twice as fast to find the linking message.

Herding Attacks 61 / 63

Wrapup

I I’ve talked about some fun attacks on Merkle-Damg̊ard
hashes.

I I hope I’ve also got you thinking about how hashing
constructions work internally.

I We spent 20+ years thinking we understood hash functions...
I ...only to discover big surprises.

I Multicollisions are way cheaper than anyone expected.
I Second preimages are way cheaper than anyone expected.
I You can break hash-based commitments without preimage

attacks.

I There are many more results along these lines, and maybe you
can discover some.

Herding Attacks 62 / 63

Questions

I Questions?

Questions 63 / 63

	Introduction
	Cryptographic Hash Functions
	Digression: Thinking About Collisions
	Merkle-Damgård Hashes
	Joux Multicollisions
	Long-Message Second Preimage Attack
	Herding Attacks
	Questions

