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Overview

I Cryptographic Hash Functions

I Thinking About Collisions

I Merkle-Damg̊ard hashing

I Joux Multicollisions[2004]

I Long-Message Second Preimage Attacks[1999,2004]

I Herding and the Nostradamus Attack[2005]
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Why Talk About These Results?

I These are very visual results–looking at the diagram often
explains the idea.

I The results are pretty accessible.

I Help you think about what’s going on inside hashing
constructions.
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Part I: Preliminaries/Review

I Hash function basics

I Thinking about collisions

I Merkle-Damg̊ard hash functions
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Cryptographic Hash Functions

I Today, they’re the workhorse of crypto.
I Originally: Needed for digital signatures

I You can’t sign 100 MB message–need to sign something short.
I “Message fingerprint” or “message digest”
I Need a way to condense long message to short string.

I We need a stand-in for the original message.

I Take a long, variable-length message...

I ...and map it to a short string (say, 128, 256, or 512 bits).
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Properties

What do we need from a hash function?

I Collision resistance

I Preimage resistance

I Second preimage resistance

I Many other properties may be important for other applications

Note: cryptographic hash functions are designed to behave
randomly.
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Collision Resistance

The core property we need.

I Can’t find X 6= Y such that HASH(X ) = HASH(Y )
I Note, there must be huge numbers of collisions...

I How many million-bit strings are there?
I Way more than number of 256-bit strings.

I ...but it’s very hard to find them.

I Ideally, best way to find collisions is trying lots of messages

I ...until a pair of outputs happen to collide by chance.
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Preimage and Second Preimage Resistance

What other properties do we need from a hash function?
I Preimage resistance

I Given H, can’t find X such that H = HASH(X )

I Second preimage resistance
I Given X , can’t find Y such that HASH(X ) = HASH(Y ).
I Like finding a collision, but harder–you already have a target

message.
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Generic Attacks

For any hash function, we have these generic attacks:

I Collision with 2n/2 tries.

I Preimages and second preimages with 2n tries.

If hash function behaves randomly, these are the best we can do.
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Other Properties

Where else are hashes used?
I Over time, hash functions became workhorses, used in many

places:
I Message authentication (HMAC)
I Key derivation functions
I Password hashing
I Cryptographic PRNGs (HashDRBG, FIPS186 PRNG)
I Hashing data for commitments
I Proofs of work

I These applications often require other properties.
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Thinking About Collisions

2k

n-bit
random
values

Expect 
collision
when 
2k = n

2a

n-bit
random
values

2b

n-bit
random
values

expect
one
collision
when 
a+b=n
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Collisions in a List

Suppose we have a list of 2k random n-bit numbers.
How many collisions can we expect?

2k

n-bit
random
values

Expect 
collision
when 
2k = n

I
(2k

2

)
≈ 22k−1 pairs of random values.

I Each pair has probability 2−n to collide.

I So we expect about 22k−n−1 collisions.
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Matching Between Two Lists

Suppose we have two lists of random n-bit numbers.
How many collisions can we expect?

2a

n-bit
random
values

2b

n-bit
random
values

expect
one
collision
when 
a+b=n

I 2a+b pairs of random values.

I Each pair has probability 2−n to collide.

I So we expect about 2a+b−n collisions.
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Merkle-Damg̊ard
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Figure: Two Different Ways to Represent Merkle-Damg̊ard Hashing
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How to Make a Good Hash Function?

I We needed to be able to build good hash functions
I Collision resistance, second preimage resistance, preimage

resistance

I About the only thing anyone knew how to build were block
ciphers.

I Merkle and Damg̊ard independently worked out a strategy

I ...that was wildly successful.
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Merkle-Damg̊ard Hashes (1)

Big idea: Make a good fixed-length hash function, then build a
variable-length hash from it.
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I We need a fixed-length compression function, F (h,m)
I hin = hash chaining value, n bits. (Example n = 256)
I hout = hash chaining value, n bits.
I m = message block, w bits. (Example w = 512)

I Pad the message, break into w -bit chunks, and process
sequentially.
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Merkle-Damg̊ard Hashes (2)
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1. Pad message to integer multiple of w bits:
I 10* padding
I ...plus length of unpadded message (Merkle-Damg̊ard

strengthening)

2. Break padded message into blocks m0,1,2,...,k−1.

3. h−1 = some fixed initial value, iv .

4. hi ← F (hi−1,mi ) for i = 0, 1, 2, . . . , k − 1.

5. Final hi is HASH(M)
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This strategy was wildly successful!
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I Merkle-Damg̊ard construction lets you worry about security of
compression function

I ...let construction take care of whole hash function.
I Almost all hashes for next 20+ years used Merkle-Damg̊ard

construction!
I MD4, MD5
I SHA0, SHA1, SHA256, SHA512
I RIPE-MD, RIPE-MD160, Haval
I Snefru,Tiger, Whirlpool
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Part II: Surprising Properties of Merkle-Damg̊ard Hashes

I Joux multicollisions

I Long-message second preimage attacks

I Herding attacks

Merkle-Damg̊ard Hashes 19 / 63



Joux Multicollisions
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Joux’ Multicollision Result

I In 2004, Joux published a new attack on Merkle-Damg̊ard
hashes.

I ...showing that we hadn’t really understood them despite 20+
years of work.

I He showed that:
I Finding 230 values with the same hash for an Merkle-Damg̊ard

hash...
I ...takes only about 30 times the work of finding one collision!
I Concatenating two Merkle-Damg̊ard hashes doesn’t give much

extra security.

I Joux’s work was the basis for the other results I’ll talk about
today.
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A Property of Merkle-Damg̊ard Hashes
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I hk contains everything HASH will ever know about m0,1,2,...,k−1

I This is necessary for HASH to be efficient
I HASH needs to process the data in one pass.

I But it has some surprising consequences....

Joux Multicollisions 22 / 63



Notation

This is an equivalent way to show Merkle-Damg̊ard hashing.
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Figure: A Different Way to Represent Merkle-Damg̊ard Hashing

I The nodes are hash chaining values

I The edges are message blocks

I This is useful for thinking about Joux Multicollisions
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Constructing a Joux Multicollision

We can concatenate collisions!
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1. Find colliding pair from iv : (m0,m
∗
0)→ h1.

2. Find colliding pair from h0: (m1,m
∗
1)→ h2.

3. Find colliding pair from h1: (m2,m
∗
2)→ h3.

4. Find colliding pair from h2: (m3,m
∗
3)→ h4.

Four collision searches, work ≈ 4× 2n/2

How many different values have we found that all hash to h4?
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Each Path = Different Message (All with Same Hash)
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Joux Multicollisions: Work
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I k collision-searches → 2k values all with same hash

k choices in the path = 2k total paths.

I A 2k -multicollision
I An ideal hash function would not have this property.

I It should be incredibly hard to find a 232-way multicollision.

I This was a huge surprise...but it was only the beginning!
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The Long-Message Second Preimage Attack
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Expandable Message h
X

Now lengths
agree!

Stretch to cover gap!
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The Long-Message Second Preimage Attack: Setting
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1. We are given a very long target message, Mtarget.

k = 2` blocks long.
Example: 255-block (about 264 bit) message for SHA1.

2. We want to find a new message Msecond such that:

Msecond 6= Mtarget

HASH(Msecond) = HASH(Mtarget)

.

3. This is expected cost about 2n work.

Just like a preimage attack.
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An Attack that ALMOST Works
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We try MANY values of m
link

 

till we match ANY h
t

1 Try lots of values for mlink.

2 After 2n−` tries, expect to hit some intermediate hash.
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Blocked By the Length in the Padding!
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h
changed

h
k-1

h
k-1

Length
changed!

3 ...but our new message is the wrong length!

Everything is fine until the final compression function...
...then L changes, and so does hfinal.

Winternitz had proposed this attack on some earlier hash
constructions.
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What We Need: An Expandable Message

iv Expandable 
Message h

X

a few blocks

iv Expandable 
Message h

X

lots and lots of blocks

Note: Same chaining 
value output

We need a new tool–an expandable message.

I Set of messages that can take on wide range of possible
lengths...

I ...but always has the same intermediate hash at the end

Note: this is an intermediate hash, so Merkle-Damg̊ard
strengthening hasn’t touched it yet.

I We can stretch this message to many different lengths.
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How Would an Expandable Message Help?
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Expandable 
Message

h
X

Try MANY linking messages
to hit ANY h

t

Note: lengths 
still different

I As before, we compute our linking message...
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Make the Lengths Agree!
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Expandable Message h
X

Now lengths
agree!

Stretch to cover gap!

I But now we can make the lengths agree

I ...bypassing the length in the final block’s padding!

So if we could find expandable messages, we could find second
preimages on long messages.
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Detour: Fixed Points

F

m
fp

h
fixed

I A fixed point is a value for which some function gives its input
as its output.

I In this case, there’s some hfixed ,mfp such that

hfixed = F (hfixed ,mfp)
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Common Way of Making Compression Functions:
Davies-Meyer

E

m

h
in

+ h
out

This should be hard, but....

F (h,m) = Em(h)⊕ h

To find a fixed point, choose any m and compute

h = Dm(0)

Em(h) = 0

F (h,m) = Em(h)⊕ h

= 0⊕ h

= h
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Expandable Message from Fixed Points [Dean 99]
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Expandable Message
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iv 2n/2

reachable
hash 
values

.

.

.

Try 2n/2 

values 
of m

start

F

m
fp

h
fixed

2n/2

fixed 
point
hash

values

expect
one
collision

Try 2n/2 

values 
of m

fp

1. Generate 2n/2 random fixed point hashes.

2. Generate 2n/2 random starting messages.

3. Expect one collision.

4. Expandable message = mstart ‖ mfp

5. Expected work to construct: 2n/2+1.

Dean discovered this in 1999, in his PhD thesis–but nobody knew
about it!
(We rediscovered it in 2004!)
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The Expandable Message

Expandable Message
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I The minimum length is two message blocks.

I It can expand to any length.
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Stretching the Expandable Message
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Figure: Stretching Expandable Message By Repeating mfp

I Once we have expandable message, it’s trivial to stretch it...

I ...just repeat mfp as many times as needed.
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Expandable Messages from Fixed Points: Work

Expandable Message
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fixed
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fixed
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I Depends on compression function–not all Merkle-Damg̊ard
hashes have easy-to-find fixed points.

I ...but this works for MD5, SHA1, SHA2

I Work to construct: 2n/2+1
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Expandable Messages From Joux Multicollisions
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Figure: Expandable Messages from Joux Multicollisions

I We discovered these in 2004.
(Lucky for us, or Dean would have totally scooped us!)

I These always work for any Merkle-Damg̊ard hash.
I Consists of many components (collisions)
I Each component:

I Costs 2n/2 to build.
I Doubles number of possible lengths of expanded message.
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How It Works: Minimum Length
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Figure: Expandable Message at Shortest Length: 4 Blocks

I We choose a length by choosing a path through the
multicollision.

I Each component has two paths that differ in length by a
power of 2.

I Result: With k components, length from k to k + 2k blocks.
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How It Works: Choosing a Length
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Figure: Message Expanded to 13 Blocks

I By choosing a different path, we can add blocks to the length
of the message.

I In this case, we chose a length of 13 blocks.
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Now We Have Expandable Messages

iv Expandable 
Message h

X

a few blocks

iv Expandable 
Message h

X

lots and lots of blocks

Note: Same chaining 
value output

I Fixed-point expandable messages
I Cheaper to build, but don’t always work.

I Joux-multicollision based expandable messages.
I More expensive to build, but work for all Merkle-Damg̊ard

hashes.

...so we can carry out long-message second preimage attacks!
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The Long-Message Second Preimage Attack
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Given: Target message Mtarget of k = 2` blocks.
Steps:

1 Construct expandable message with length up to k blocks.

2 Find linking message to any intermediate hash for Mtarget.

3 Expand message to cover skipped-over message blocks.

Total cost = expandable message + linking message.
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Step One: Build Expandable Message

iv Expandable 
Message h

X

a few blocks

iv Expandable 
Message h

X

lots and lots of blocks

Note: Same chaining 
value output

Reminder: Mtarget is 2` blocks long

I For fixed-point expandable messages, 2n/2+1.

I For multicollision expandable messages, `× 2n/2+1

This is almost never the expensive part of the attack.
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Step Two: Find Linking Message
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Expandable 
Message

h
X

Try MANY linking messages
to hit ANY h

t

Note: lengths 
still different

Reminder: Mtarget is 2` blocks long

I There are about 2` intermediate hash values to hit.

I For n-bit hash output, expect 2n−` tries to get a match.

This is almost always the expensive part of the attack.
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Step Three: Stretch Expandable Message to Fix Length
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Expandable Message h
X

Now lengths
agree!

Stretch to cover gap!

I This costs almost nothing for either type of expandable
message.

I Result: Second message with same hash output as Mtarget.

...and same length as Mtarget.
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Total Cost

I Merkle-Damg̊ard hashes have maximum lengths they will
support.

I MD5, SHA1, SHA256: About 255 blocks.
I SHA512: About 2107 blocks.

I Attack gets cheaper (but less practical) for longer messages.

I Second preimage attack on SHA1 with 255-block message:

total cost = expandable message + linking message

= 281 + 2160−55

= 281 + 2105

≈ 2105
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Herding Hash Functions and the Nostradamus Attack
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Using Hash Functions to Commit to a Result

I Suppose I claim I can tell the future...

I ...say, I clam I can predict presidential elections or the stock
market.

I How can I prove my prophetic abilities without disclosing my
predictions ahead of time?

I I could publish a HASH of my predictions.
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Using Hash Functions to Commit to a Result(2)

So how does this work?
I I make my predictions

I Using statistical models, prediction markets, dartboards, and
crystal balls.

I I write them into a document, P.

I I hash the document, H ← HASH(P).

I I publish H so that I can prove I’m a real prophet.

I ...After my predictions have come to pass, I reveal P.
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Should You Believe I Can Tell the Future?

Suppose I go through this protocol using a somewhat-weak hash
function like MD5.

I Is this evidence I can tell the future?

I What property of the hash function are you relying on?

I It’s not exactly collision-resistance, but maybe not quite
preimage resistance either....
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The Diamond Structure: A Merkle-Tree Computed by
Finding Collisions.

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

h
10

h
11

h
12

h
13

h
20

h
21

h
diamond

I Starting from 2k random hash values, build a hash tree.
I ...by finding collisions.
I Result: A diamond structure that routes 2k input hash

chaining values into one output hash.

Note: Edges have multiple message blocks; nodes are hash
chaining values.

Herding Attacks 53 / 63



Precomputing the Diamond
I claim to predict the outcome of the 2016 presidential election.
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I I precompute messages predicting each of eight likely winners.
I Starting from iv , I generate eight prediction strings that are

all the same length.
I Each arrow has multiple message blocks of boilerplate.
I I hash them into a diamond structure.
I I publish hdiamond.
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Cost to Precompute a Diamond
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I For 2k precomputed prediction strings...

I Naive approach: 2k − 1 collision searches.

I ...better approach for big k .

I I can reveal any of my precomputed choices after the election.
I But I have no more flexibility than that.

I Once hdiamond is published, I’m stuck with my predictions.
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Routing the Diamond
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I When I want to “reveal” my prediction, I follow the edges of
the tree.

This costs nothing.

I Each edge has some message blocks that are appended to my
prediction string.

I At the end, can choose any of my precomputed predictions to
reveal!
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Herding Hash Functions

First, commit to a hash output, hdiamond.
Then, hash any prefix P to hdiamond.

1. Build a random diamond structure with 2k starting hash
values.

2. Commit to hdiamond.

3. Decide what prediction P I want to have made.

4. Find a linking message from P to one of the starting hash
values.

5. Route through the diamond to hdiamond.
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Building the Random Diamond Structure
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1. 2k target values.
2. We need big k to make finding the linking message workable.
3. Intuition: We don’t care which values hash together.

I Compute 2n/2 messages from each random target hash value.
I Expect to find enough collisions to get down to next layer of

tree.
I Repeat process until number of intermediate hashes is small

enough to do naive algorithm.
I Expected work is about 2(n+k)/2+2.
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Finding a Linking Message
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I With 2k target values, we need about 2n−k work to find a
linking message.
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Routing Through the Diamond
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I Once we’ve found the linking message, we can route any
prefix of the expected length to hdiamond.

I Total work: 2n/2+k/2+2 to make the diamond structure, and
2n−k to find a linking message.
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Refinements: Adding an Expandable Message
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Adding an expandable message to the end of the diamond
structure has two benefits:

I We now have some flexibility in length of P.
I We can hit any of the 2k+1 − 1 total intermediate hashes in

the diamond structure.
I Makes it about twice as fast to find the linking message.
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Wrapup

I I’ve talked about some fun attacks on Merkle-Damg̊ard
hashes.

I I hope I’ve also got you thinking about how hashing
constructions work internally.

I We spent 20+ years thinking we understood hash functions...
I ...only to discover big surprises.

I Multicollisions are way cheaper than anyone expected.
I Second preimages are way cheaper than anyone expected.
I You can break hash-based commitments without preimage

attacks.

I There are many more results along these lines, and maybe you
can discover some.
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Questions

I Questions?
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