Overview

Some Attacks on Merkle-Damgård Hashes

John Kelsey, NIST and KU Leuven

May 8, 2018

Overview

- Cryptographic Hash Functions
- Thinking About Collisions
- Merkle-Damgård hashing
- Joux Multicollisions[2004]
- Long-Message Second Preimage Attacks[1999,2004]
- Herding and the Nostradamus Attack[2005]

Why Talk About These Results?

- These are very visual results-looking at the diagram often explains the idea.
- The results are pretty accessible.
- Help you think about what's going on inside hashing constructions.

Part I: Preliminaries/Review

- Hash function basics
- Thinking about collisions
- Merkle-Damgård hash functions

Cryptographic Hash Functions

- Today, they're the workhorse of crypto.
- Originally: Needed for digital signatures
- You can't sign 100 MB message-need to sign something short.
- "Message fingerprint" or "message digest"
- Need a way to condense long message to short string.
- We need a stand-in for the original message.
- Take a long, variable-length message...
- ...and map it to a short string (say, 128, 256, or 512 bits).

Properties

What do we need from a hash function?

- Collision resistance
- Preimage resistance
- Second preimage resistance
- Many other properties may be important for other applications

Note: cryptographic hash functions are designed to behave randomly.

Collision Resistance

The core property we need.

- Can't find $X \neq Y$ such that $\operatorname{HASH}(X)=\operatorname{HASH}(Y)$
- Note, there must be huge numbers of collisions...
- How many million-bit strings are there?
- Way more than number of 256 -bit strings.
- ...but it's very hard to find them.
- Ideally, best way to find collisions is trying lots of messages
- ...until a pair of outputs happen to collide by chance.

Preimage and Second Preimage Resistance

What other properties do we need from a hash function?

- Preimage resistance
- Given H, can't find X such that $H=\operatorname{HASH}(X)$
- Second preimage resistance
- Given X, can't find Y such that $\operatorname{HASH}(X)=\operatorname{HASH}(Y)$.
- Like finding a collision, but harder-you already have a target message.

Generic Attacks

For any hash function, we have these generic attacks:

- Collision with $2^{n / 2}$ tries.
- Preimages and second preimages with 2^{n} tries.

If hash function behaves randomly, these are the best we can do.

Other Properties

Where else are hashes used?

- Over time, hash functions became workhorses, used in many places:
- Message authentication (HMAC)
- Key derivation functions
- Password hashing
- Cryptographic PRNGs (HashDRBG, FIPS186 PRNG)
- Hashing data for commitments
- Proofs of work
- These applications often require other properties.

Thinking About Collisions

Collisions in a List

Suppose we have a list of 2^{k} random n-bit numbers. How many collisions can we expect?

- $\binom{2^{k}}{2} \approx 2^{2 k-1}$ pairs of random values.
- Each pair has probability 2^{-n} to collide.
- So we expect about $2^{2 k-n-1}$ collisions.

Matching Between Two Lists

Suppose we have two lists of random n-bit numbers. How many collisions can we expect?

- 2^{a+b} pairs of random values.
- Each pair has probability 2^{-n} to collide.
- So we expect about 2^{a+b-n} collisions.

Merkle-Damgård

$$
\text { iv } \xrightarrow{\mathrm{m}_{0}} \mathrm{~h}_{0} \xrightarrow{\mathrm{~m}_{1}} \mathrm{~h}_{1} \xrightarrow{\mathrm{~m}_{2}} \mathrm{~h}_{2} \xrightarrow{\mathrm{~m}_{3} \| 10^{*} \mathrm{~L}} \mathrm{~h}_{\text {final }}
$$

Figure: Two Different Ways to Represent Merkle-Damgård Hashing

How to Make a Good Hash Function?

- We needed to be able to build good hash functions
- Collision resistance, second preimage resistance, preimage resistance
- About the only thing anyone knew how to build were block ciphers.
- Merkle and Damgård independently worked out a strategy
- ...that was wildly successful.

Merkle-Damgård Hashes (1)

Big idea: Make a good fixed-length hash function, then build a variable-length hash from it.

- We need a fixed-length compression function, $F(h, m)$
- $h_{i n}=$ hash chaining value, n bits. (Example $n=256$)
- $h_{\text {out }}=$ hash chaining value, n bits.
- $m=$ message block, w bits. (Example $w=512$)
- Pad the message, break into w-bit chunks, and process sequentially.

Merkle-Damgård Hashes (2)

1. Pad message to integer multiple of w bits:

- 10* padding
- ...plus length of unpadded message (Merkle-Damgård strengthening)

2. Break padded message into blocks $m_{0,1,2, \ldots, k-1}$.
3. $h_{-1}=$ some fixed initial value, iv.
4. $h_{i} \leftarrow F\left(h_{i-1}, m_{i}\right)$ for $i=0,1,2, \ldots, k-1$.
5. Final h_{i} is $\operatorname{HASH}(M)$

This strategy was wildly successful!

- Merkle-Damgård construction lets you worry about security of compression function
- ...let construction take care of whole hash function.
- Almost all hashes for next 20+ years used Merkle-Damgård construction!
- MD4, MD5
- SHA0, SHA1, SHA256, SHA512
- RIPE-MD, RIPE-MD160, Haval
- Snefru,Tiger, Whirlpool

Part II: Surprising Properties of Merkle-Damgård Hashes

- Joux multicollisions
- Long-message second preimage attacks
- Herding attacks

Joux Multicollisions

Joux' Multicollision Result

- In 2004, Joux published a new attack on Merkle-Damgård hashes.
- ...showing that we hadn't really understood them despite 20+ years of work.
- He showed that:
- Finding 2^{30} values with the same hash for an Merkle-Damgård hash...
- ...takes only about 30 times the work of finding one collision!
- Concatenating two Merkle-Damgård hashes doesn't give much extra security.
- Joux's work was the basis for the other results l'll talk about today.

A Property of Merkle-Damgård Hashes

- h_{k} contains everything HASH will ever know about $m_{0,1,2, \ldots, k-1}$
- This is necessary for HASH to be efficient
- HASH needs to process the data in one pass.
- But it has some surprising consequences....

Notation

This is an equivalent way to show Merkle-Damgård hashing.

$$
\text { iv } \xrightarrow{\mathrm{m}_{0}} \mathrm{~h}_{0} \xrightarrow{\mathrm{~m}_{1}} \mathrm{~h}_{1} \xrightarrow{\mathrm{~m}_{2}} \mathrm{~h}_{2} \xrightarrow{\mathrm{~m}_{3} \| 10^{*} \mathrm{~L}} \mathrm{~h}_{\text {final }}
$$

Figure: A Different Way to Represent Merkle-Damgård Hashing

- The nodes are hash chaining values
- The edges are message blocks
- This is useful for thinking about Joux Multicollisions

Constructing a Joux Multicollision

We can concatenate collisions!

1. Find colliding pair from iv: $\left(m_{0}, m_{0}^{*}\right) \rightarrow h_{1}$.
2. Find colliding pair from $h_{0}:\left(m_{1}, m_{1}^{*}\right) \rightarrow h_{2}$.
3. Find colliding pair from $h_{1}:\left(m_{2}, m_{2}^{*}\right) \rightarrow h_{3}$.
4. Find colliding pair from $h_{2}:\left(m_{3}, m_{3}^{*}\right) \rightarrow h_{4}$.

Four collision searches, work $\approx 4 \times 2^{n / 2}$
How many different values have we found that all hash to h_{4} ?

Each Path $=$ Different Message (All with Same Hash)

Joux Multicollisions: Work

- k collision-searches $\rightarrow 2^{k}$ values all with same hash k choices in the path $=2^{k}$ total paths.
- A 2^{k}-multicollision
- An ideal hash function would not have this property.
- It should be incredibly hard to find a 2^{32}-way multicollision.
- This was a huge surprise...but it was only the beginning!

The Long-Message Second Preimage Attack

The Long-Message Second Preimage Attack: Setting

$$
\text { iv } \xrightarrow{\mathrm{m}_{0}} \mathrm{~h}_{0} \stackrel{\mathrm{~m}_{1}}{\longrightarrow} \mathrm{~h}_{1}{ }^{\mathrm{m}_{2}} \mathrm{~h}_{2} \stackrel{\mathrm{~m}_{3}}{\mathrm{~h}_{3}} \stackrel{\mathrm{~m}_{4}}{ } \mathrm{~h}_{4} \ldots \mathrm{~m}_{\mathrm{k}-1} \| 10 * \mathrm{~L} \text { target }
$$

1. We are given a very long target message, $M_{\text {target }}$.
$k=2^{\ell}$ blocks long.
Example: 2^{55}-block (about 2^{64} bit) message for SHA1.
2. We want to find a new message $M_{\text {second }}$ such that:

$$
\begin{gathered}
M_{\text {second }} \neq M_{\text {target }} \\
\operatorname{HASH}\left(M_{\text {second }}\right)=\operatorname{HASH}\left(M_{\text {target }}\right)
\end{gathered}
$$

3. This is expected cost about 2^{n} work.

Just like a preimage attack.

An Attack that ALMOST Works

1 Try lots of values for $m_{\text {link }}$.
2 After $2^{n-\ell}$ tries, expect to hit some intermediate hash.

Blocked By the Length in the Padding!

3 ...but our new message is the wrong length!
Everything is fine until the final compression function... ...then L changes, and so does $h_{\text {final }}$.

Winternitz had proposed this attack on some earlier hash constructions.

What We Need: An Expandable Message

We need a new tool-an expandable message.

- Set of messages that can take on wide range of possible lengths...
- ...but always has the same intermediate hash at the end Note: this is an intermediate hash, so Merkle-Damgård strengthening hasn't touched it yet.
- We can stretch this message to many different lengths.

How Would an Expandable Message Help?

- As before, we compute our linking message...

Make the Lengths Agree!

- But now we can make the lengths agree
- ...bypassing the length in the final block's padding!

So if we could find expandable messages, we could find second preimages on long messages.

Detour: Fixed Points

- A fixed point is a value for which some function gives its input as its output.
- In this case, there's some $h_{\text {fixed }}, m_{f p}$ such that

$$
h_{f i x e d}=F\left(h_{f i x e d}, m_{f p}\right)
$$

Common Way of Making Compression Functions: Davies-Meyer

This should be hard, but....

$$
F(h, m)=E_{m}(h) \oplus h
$$

To find a fixed point, choose any m and compute

$$
\begin{aligned}
h & =D_{m}(0) \\
E_{m}(h) & =0 \\
F(h, m) & =E_{m}(h) \oplus h \\
& =0 \oplus h \\
& =h
\end{aligned}
$$

Expandable Message from Fixed Points [Dean 99]

1. Generate $2^{n / 2}$ random fixed point hashes.
2. Generate $2^{n / 2}$ random starting messages.
3. Expect one collision.
4. Expandable message $=m_{\mathrm{start}} \| m_{\mathrm{fp}}$
5. Expected work to construct: $2^{n / 2+1}$.

Dean discovered this in 1999, in his PhD thesis-but nobody knew about it!
(We rediscovered it in 2004!)

The Expandable Message

- The minimum length is two message blocks.
- It can expand to any length.

Stretching the Expandable Message

Figure: Stretching Expandable Message By Repeating $m_{\text {fp }}$

- Once we have expandable message, it's trivial to stretch it...
- ...just repeat m_{fp} as many times as needed.

Expandable Messages from Fixed Points: Work

- Depends on compression function-not all Merkle-Damgård hashes have easy-to-find fixed points.
- ...but this works for MD5, SHA1, SHA2
- Work to construct: $2^{\text {n/2+1 }}$

Expandable Messages From Joux Multicollisions

Figure: Expandable Messages from Joux Multicollisions

- We discovered these in 2004.
(Lucky for us, or Dean would have totally scooped us!)
- These always work for any Merkle-Damgård hash.
- Consists of many components (collisions)
- Each component:
- Costs $2^{n / 2}$ to build.
- Doubles number of possible lengths of expanded message.

How It Works: Minimum Length

Figure: Expandable Message at Shortest Length: 4 Blocks

- We choose a length by choosing a path through the multicollision.
- Each component has two paths that differ in length by a power of 2.
- Result: With k components, length from k to $k+2^{k}$ blocks.

How It Works: Choosing a Length

Figure: Message Expanded to 13 Blocks

- By choosing a different path, we can add blocks to the length of the message.
- In this case, we chose a length of 13 blocks.

Now We Have Expandable Messages

- Fixed-point expandable messages
- Cheaper to build, but don't always work.
- Joux-multicollision based expandable messages.
- More expensive to build, but work for all Merkle-Damgård hashes.
...so we can carry out long-message second preimage attacks!

The Long-Message Second Preimage Attack

$$
\text { iv } \xrightarrow{\mathrm{m}_{0}} \mathrm{~h}_{0} \stackrel{\mathrm{~m}_{1}}{\longrightarrow} \mathrm{~h}_{1}{ }^{\mathrm{m}_{2}} \mathrm{~h}_{2} \stackrel{\mathrm{~m}_{3}}{\mathrm{~h}_{3} \stackrel{\mathrm{~m}_{4}}{ } \mathrm{~h}_{4} \ldots \mathrm{~m}_{\mathrm{k}-1} \| 10^{*} \mathrm{~L} \text { target }}
$$

Given: Target message $M_{\text {target }}$ of $k=2^{\ell}$ blocks. Steps:

1 Construct expandable message with length up to k blocks.
2 Find linking message to any intermediate hash for $M_{\text {target }}$.
3 Expand message to cover skipped-over message blocks.
Total cost $=$ expandable message + linking message.

Step One: Build Expandable Message

Reminder: $M_{\text {target }}$ is 2^{ℓ} blocks long

- For fixed-point expandable messages, $2^{n / 2+1}$.
- For multicollision expandable messages, $\ell \times 2^{n / 2+1}$

This is almost never the expensive part of the attack.

Step Two: Find Linking Message

Reminder: $M_{\text {target }}$ is 2^{ℓ} blocks long

- There are about 2^{ℓ} intermediate hash values to hit.
- For n-bit hash output, expect $2^{n-\ell}$ tries to get a match.

This is almost always the expensive part of the attack.

Step Three: Stretch Expandable Message to Fix Length

- This costs almost nothing for either type of expandable message.
- Result: Second message with same hash output as $M_{\text {target }}$. ...and same length as $M_{\text {target }}$.

Total Cost

- Merkle-Damgård hashes have maximum lengths they will support.
- MD5, SHA1, SHA256: About 2^{55} blocks.
- SHA512: About 2^{107} blocks.
- Attack gets cheaper (but less practical) for longer messages.
- Second preimage attack on SHA1 with 2^{55}-block message:

$$
\begin{aligned}
\text { total cost } & =\text { expandable message }+ \text { linking message } \\
& =2^{81}+2^{160-55} \\
& =2^{81}+2^{105} \\
& \approx 2^{105}
\end{aligned}
$$

Herding Hash Functions and the Nostradamus Attack

Using Hash Functions to Commit to a Result

- Suppose I claim I can tell the future...
- ...say, I clam I can predict presidential elections or the stock market.
- How can I prove my prophetic abilities without disclosing my predictions ahead of time?
- I could publish a HASH of my predictions.

Using Hash Functions to Commit to a Result(2)

So how does this work?

- I make my predictions
- Using statistical models, prediction markets, dartboards, and crystal balls.
- I write them into a document, P.
- I hash the document, $H \leftarrow \operatorname{HASH}(P)$.
- I publish H so that I can prove I'm a real prophet.
- ...After my predictions have come to pass, I reveal P.

Should You Believe I Can Tell the Future?

Suppose I go through this protocol using a somewhat-weak hash function like MD5.

- Is this evidence I can tell the future?
- What property of the hash function are you relying on?
- It's not exactly collision-resistance, but maybe not quite preimage resistance either....

The Diamond Structure: A Merkle-Tree Computed by

 Finding Collisions.

- Starting from 2^{k} random hash values, build a hash tree.
- ...by finding collisions.
- Result: A diamond structure that routes 2^{k} input hash chaining values into one output hash.
Note: Edges have multiple message blocks; nodes are hash chaining values.

Precomputing the Diamond

I claim to predict the outcome of the 2016 presidential election.

- I precompute messages predicting each of eight likely winners.
- Starting from iv, I generate eight prediction strings that are all the same length.
- Each arrow has multiple message blocks of boilerplate.
- I hash them into a diamond structure.
- I publish $h_{\text {diamond }}$.

Cost to Precompute a Diamond

- For 2^{k} precomputed prediction strings...
- Naive approach: $2^{k}-1$ collision searches.
- ...better approach for big k.
- I can reveal any of my precomputed choices after the election.
- But I have no more flexibility than that.
- Once $h_{\text {diamond }}$ is published, I'm stuck with my predictions.

Routing the Diamond

- When I want to "reveal" my prediction, I follow the edges of the tree.

This costs nothing.

- Each edge has some message blocks that are appended to my prediction string.
- At the end, can choose any of my precomputed predictions to reveal!

Herding Hash Functions

First, commit to a hash output, $h_{\text {diamond }}$.
Then, hash any prefix P to $h_{\text {diamond }}$.

1. Build a random diamond structure with 2^{k} starting hash values.
2. Commit to $h_{\text {diamond }}$ -
3. Decide what prediction P I want to have made.
4. Find a linking message from P to one of the starting hash values.
5. Route through the diamond to $h_{\text {diamond }}$.

Building the Random Diamond Structure

1. 2^{k} target values.
2. We need big k to make finding the linking message workable.
3. Intuition: We don't care which values hash together.

- Compute $2^{n / 2}$ messages from each random target hash value.
- Expect to find enough collisions to get down to next layer of tree.
- Repeat process until number of intermediate hashes is small enough to do naive algorithm.
- Fexpected work is about $2^{(n+k) / 2+2}$.

Finding a Linking Message

- With 2^{k} target values, we need about 2^{n-k} work to find a linking message.

Routing Through the Diamond

- Once we've found the linking message, we can route any prefix of the expected length to $h_{\text {diamond }}$.
- Total work: $2^{n / 2+k / 2+2}$ to make the diamond structure, and 2^{n-k} to find a linking message.

Refinements: Adding an Expandable Message

Adding an expandable message to the end of the diamond structure has two benefits:

- We now have some flexibility in length of P.
- We can hit any of the $2^{k+1}-1$ total intermediate hashes in the diamond structure.
- Makes it about twice as fast to find the linking message.

Wrapup

- I've talked about some fun attacks on Merkle-Damgård hashes.
- I hope I've also got you thinking about how hashing constructions work internally.
- We spent $20+$ years thinking we understood hash functions...
- ...only to discover big surprises.
- Multicollisions are way cheaper than anyone expected.
- Second preimages are way cheaper than anyone expected.
- You can break hash-based commitments without preimage attacks.
- There are many more results along these lines, and maybe you can discover some.

Questions

- Questions?

