1. Recall our construction of CPA-secure encryption from PRF (Construction 3.30 in the textbook). Show that while providing secrecy, this encryption scheme does not provide message integrity. Specifically, show that an attacker who sees a ciphertext \(c := \langle r, s \rangle \), but does not know the secret key \(k \) or the message \(m \) that is encrypted, can still create a ciphertext \(c' \) that encrypts \(m \oplus 1^n \).

2. Say \(\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy}) \) is a secure MAC, and for \(k \in \{0, 1\}^n \), the tag-generation algorithm \(\text{Mac}_k \) always outputs tags of length \(t(n) \). Prove that \(t \) must be super-logarithmic or, equivalently, that if \(t(n) = O(\log n) \) then \(\Pi \) cannot be a secure MAC.
 \textbf{Hint:} Consider the probability of randomly guessing a valid tag.

3. Consider the following MAC for messages of length \(\ell(n) = 2n - 2 \) using a pseudorandom function \(F \): On input a message \(m_0 || m_1 \) (with \(|m_0| = |m_1| = n - 1 \)) and key \(k \in \{0, 1\}^n \), algorithm \(\text{Mac} \) outputs \(t = F_k(0 || m_0) || F_k(1 || m_1) \). Algorithm \(\text{Vrfy} \) is defined in the natural way. Is \((\text{Gen}, \text{Mac}, \text{Vrfy}) \) secure? Prove your answer.

4. Let \(F \) be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticated fixed-length messages. (In each case \(\text{Gen} \) outputs a uniform \(k \in \{0, 1\}^n \). Let \(\langle i \rangle \) denote an \(n/2 \)-bit encoding of the integer \(i \).
 (a) To authenticate a message \(m = m_1, \ldots, m_\ell \), where \(m_i \in \{0, 1\}^n \), compute \(t := F_k(m_1) \oplus \cdots \oplus F_k(m_\ell) \).
 (b) To authenticate a message \(m = m_1, \ldots, m_\ell \), where \(m_i \in \{0, 1\}^{n/2} \), compute \(t := F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle || m_\ell) \).