1. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_A with Alice and a different key k_B with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?

2. Consider the following key-exchange protocol:

 Common input: The security parameter 1^n.
 (a) Alice runs $G(1^n)$ to obtain (G, q, g).
 (b) Alice chooses $x_1, x_2 \leftarrow \mathbb{Z}_q$ and sends $\alpha = x_1 + x_2$ to Bob.
 (c) Bob chooses $x_3 \leftarrow \mathbb{Z}_q$ and sends $h_2 = g^{x_3}$ to Alice.
 (d) Alice sends $h_3 = g^{x_2 \cdot x_3}$ to Bob.
 (e) Alice outputs $h_2^{x_1}$. Bob outputs $(g^\alpha)^{x_3} \cdot (h_3)^{-1}$.

 Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

3. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.

4. Consider the following variant of El Gamal encryption. Let $p = 2q + 1$, let G be the group of squares modulo p, and let g be a generator of G. The private key is (G, g, q, x) and the public key is (G, g, q, h), where $h = g^x$ and $x \in \mathbb{Z}_q$ is chosen uniformly. To encrypt a message $m \in \mathbb{Z}_q$, choose a uniform $r \in \mathbb{Z}_q$, compute $c_1 := g^r \mod p$ and $c_2 := h^r \mod p$, and let the ciphertext be (c_1, c_2). Is this scheme CPA-secure? Prove your answer.

5. Consider the following modified version of padded RSA encryption: Assume messages to be encrypted have length exactly $\|N\|/2$. To encrypt, first compute $\hat{m} := 0x00||r||0x00||m$ where r is a uniform string of length $\|N\|/2 - 16$. Then compute the ciphertext $c := [\hat{m}^e \mod N]$. When decrypting a ciphertext c, the receiver computes $\hat{m} := [c^d \mod N]$ and returns an error if \hat{m} does not consist of $0x00$ followed by $\|N\|/2 - 16$ arbitrary bits followed by $0x00$. Show that this scheme is not CCA-secure. Why is it easier to construct a chosen-ciphertext attack on this scheme than on PKCS #1 v1.5?

6. In Section 12.4.1 we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.