Indistinguishable Encryptions in the Presence of an Eavesdropper
Class Exercise—2/22/18

Assume G is a PRG with input length n and output length $n + 1$. Do the following encryption schemes Π have indistinguishable encryptions in the presence of an eavesdropper? If yes, formally prove that if G is a PRG then the scheme is secure. If not, present a ppt adversary A and show that $\Pr[PrivK_{\text{eav}}_{A,\Pi}(n) = 1] \geq 1/2 + \rho(n)$ for some non-negligible $\rho()$.

1. Π is defined as follows: Gen outputs a random key k of length n. To encrypt a message $m = m_1 || m_2$, where m_1, m_2 each have length $n + 1$, output $c := (c_1 || c_2) := G(k) \oplus m_1 || G(k) \oplus m_2$. To decrypt output $m_1 || m_2 = G(k) \oplus c_1 || G(k) \oplus c_2$.

 Not secure. Consider the following adversary A:
 A chooses $m_d = m_1^0 || m_2^0$ such that $m_1^0 \oplus m_2^0 \neq m_1^1 \oplus m_2^1$. $m = m_1^1 || m_2^1$.

 Given ciphertext $c^* = c_1^* || c_2^*$
 A checks whether $c_1^* \oplus c_2^* = m_1^0 \oplus m_2^0$
 If yes, output $b' = 0$
 o/w output $b' = 1$.

 Π can be seen -hard $\Pr[PrivK_{\text{eav}}_{A,\Pi}(n) = 1] = 1$.

2. Π is defined as follows: Gen outputs a random key k of length n. To encrypt a message m, where m has length $n + 1$, output $c := G(k) \oplus m || 0^n$. To decrypt, output the first n bits of $c \oplus (G(k)||0^n)$.

 Secure. We will give a proof by reduction.

 Assume the scheme is not secure. Then there exists a ppt $A \cdot c.t.$ $Pr[PrivK_{A,\Pi}(n) = 1] \geq 1/2 + \rho(n)$. We construct the following Distinguisher D:

 $D(w)$:
 1. Run $A(m)$ to obtain m_0, m_1
 2. Choose $b \in \{0,1\}^n$
 Output $c^* = \omega \oplus m_b || 0^n$ to A
 3. Run $A(c^*)$ to obtain b'
 4. If $b' = b$ output 1 o/w output 0.

 $\Pr[D(r) = 1] = \frac{1}{2}$ (by perfect secrecy)

 $\Pr[D(G(k) = 1] = \Pr[PrivK_{A,\Pi}(n) = 1] = \frac{1}{2} + \rho(n)$ (by hypothesis).

 So $\Pr[PrivK_{A,\Pi}(n) = 1] - \Pr[D(G(k) = 1] \geq 2\rho(n)$

 So D is a distinguisher for G. \(\square\)