Introduction to Cryptology

Lecture 20
Announcements

• HW7 due Tuesday, 4/25
• Extra Instructor Office Hours
 – Thursday, 4/20 from 10am-11am
Agenda

• More Number Theory!
Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(a, m, N) //computes $a^m \mod N$, where $m = m_{n-1}m_{n-2} \cdots m_1m_0$ are the bits of m.

Set $s := a$
Set $temp := 1$
For $i = 0$ to $n - 1$
 If $m_i = 1$
 Set $temp := (temp \cdot s) \mod N$
 Set $s := s^2 \mod N$
return $temp$;

This is clearly efficient since the loop runs for n iterations, where $n = \log_2 m$.
Modular Exponentiation

Why does it work?

\[m = \sum_{i=0}^{n-1} m_i \cdot 2^i \]

Consider \(a^m = a^{\sum_{i=0}^{n-1} m_i \cdot 2^i} = \prod_{i=0}^{n-1} a^{m_i \cdot 2^i} \).

In the efficient algorithm:

s values are precomputations of \(a^{2^i} \), for \(i = 0 \) to \(n - 1 \) (this is the “repeated squaring” part since \(a^{2^i} = (a^{2^{i-1}})^2 \)).

If \(m_i = 1 \), we multiply in the corresponding s-value.

If \(m_i = 0 \), then \(a^{m_i \cdot 2^i} = a^0 = 1 \) and so we skip the multiplication step.
Euclidean Algorithm

Theorem: Let a, p be positive integers. Then there exist integers X, Y such that $Xa + Yb = \gcd(a, p)$.

Given a, p, the Euclidean algorithm can be used to compute $\gcd(a, p)$ in polynomial time. The extended Euclidean algorithm can be used to compute X, Y in polynomial time.

We will see the extended Euclidean algorithm next class
Extended Euclidean Algorithm

Example #1

Find: X, Y such that $9X + 23Y = \gcd(9, 23) = 1$.

\[
23 = 2 \cdot 9 + 5 \\
9 = 1 \cdot 5 + 4 \\
5 = 1 \cdot 4 + 1 \\
4 = 4 \cdot 1 + 0
\]

\[
1 = 5 - 1 \cdot 4 \\
1 = 5 - 1 \cdot (9 - 1 \cdot 5) \\
1 = (23 - 2 \cdot 9) - (9 - (23 - 2 \cdot 9)) \\
1 = 2 \cdot 23 - 5 \cdot 9
\]

$-5 = 18 \mod 23$ is the multiplicative inverse of $9 \mod 23$.
Extended Euclidean Algorithm

Example #2

Find: \(X, Y \) such that \(5X + 33Y = \gcd(5, 33) = 1 \).

\[
\begin{align*}
33 &= 6 \cdot 5 + 3 \\
5 &= 1 \cdot 3 + 2 \\
3 &= 1 \cdot 2 + 1 \\
2 &= 2 \cdot 1 + 0
\end{align*}
\]

\[
\begin{align*}
1 &= 3 - 1 \cdot 2 \\
1 &= 3 - (5 - 3) \\
1 &= (33 - 6 \cdot 5) - (5 - (33 - 6 \cdot 5)) \\
1 &= 2 \cdot 33 - 13 \cdot 5
\end{align*}
\]

\(-13 = 20 \mod 33\) is the multiplicative inverse of 5 \(\mod 33 \).
Time Complexity of Euclidean Algorithm

When finding \(\text{gcd}(a, b) \), the “\(b \)” value gets halved every two rounds.
Why?

Time complexity: 2\(\log(b) \).
This is polynomial in the length of the input.
Why?
Chinese Remainder Theorem
Going from \((a, b) \in \mathbb{Z}_p \times \mathbb{Z}_q\) to \(x \in \mathbb{Z}_N\)

Find the unique \(x \mod N\) such that
\[
\begin{align*}
x &\equiv a \mod p \\
x &\equiv b \mod q
\end{align*}
\]

Recall since \(\gcd(p, q) = 1\) we can write
\[Xp + Yq = 1\]

Note that
\[
\begin{align*}
Xp &\equiv 0 \mod p \\
Xp &\equiv 1 \mod q
\end{align*}
\]

Whereas
\[
\begin{align*}
Yq &\equiv 1 \mod p \\
Yq &\equiv 0 \mod p
\end{align*}
\]
Going from \((a, b) \in \mathbb{Z}_p \times \mathbb{Z}_q\) to \(x \in \mathbb{Z}_N\)

Find the unique \(x \mod N\) such that
\[
x \equiv a \mod p \\
x \equiv b \mod q
\]

Claim:
\[
b \cdot X_p + a \cdot Y_q \equiv a \mod p \\
b \cdot X_p + a \cdot Y_q \equiv b \mod q
\]

Therefore, \(x \equiv b \cdot X_p + a \cdot Y_q \mod N\)