Announcements

• Midterm Upcoming on 3/16
 – Review sheet and solutions will be posted soon
 – Cheat sheet will be included in exam

• Please pick up Homeworaks during my office hours or TA’s office hours!
Agenda

• Last time:
 – Domain extension for MACs (K/L 4.4)
 – CCA security (K/L 3.7)
 – Authenticated Encryption (K/L 4.5)

• This time:
 – Collision-Resistant Hash Functions (K/L 5.1)
 – Class Exercise
 – Domain Extension (Merkle-Damgard) (K/L 5.2)
 – Domain Extension (Sponge)
Collision Resistant Hashing
Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (Gen, H) satisfying the following:

- Gen takes as input a security parameter 1^n and outputs a key s. We assume that 1^n is implicit in s.
- H takes as input a key s and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$.

If H^s is defined only for inputs $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ'. In this case, we also call H a compression function.
The collision-finding experiment

\[\text{Hashcoll}_{A,\Pi}(n): \]

1. A key \(s \) is generated by running \(\text{Gen}(1^n) \).
2. The adversary \(A \) is given \(s \) and outputs \(x, x' \). (If \(\Pi \) is a fixed-length hash function for inputs of length \(\ell'(n) \), then we require \(x, x' \in \{0,1\}^{\ell'(n)} \).)
3. The output of the experiment is defined to be 1 if and only if \(x \neq x' \) and \(H^s(x) = H^s(x') \). In such a case we say that \(A \) has found a collision.
Security Definition

Definition: A hash function \(\Pi = (\text{Gen}, H) \) is collision resistant if for all ppt adversaries \(A \) there is a negligible function \(neg \) such that
\[
\Pr[\text{Hashcoll}_{A,\Pi}(n) = 1] \leq neg(n).
\]
Weaker Notions of Security

• Second preimage or target collision resistance: Given s and a uniform x it is infeasible for a ppt adversary to find $x' \neq x$ such that $H^s(x') = H^s(x)$.

• Preimage resistance: Given s and uniform y it is infeasible for a ppt adversary to find a value x such that $H^s(x) = y$.
Domain Extension
The Merkle-Damgard Transform

\[x_1 \rightarrow h^s \rightarrow x_2 \rightarrow h^s \rightarrow \ldots \rightarrow x_B \rightarrow h^s \rightarrow x_{B+1} = L \rightarrow h^s \rightarrow H^s(x) \]

FIGURE 5.1: The Merkle-Damgård transform.
The Merkle-Damgard Transform

Let (Gen, h) be a fixed-length hash function for inputs of length $2n$ and with output length n. Construct hash function (Gen, H) as follows:

- **Gen**: remains unchanged
- **H**: on input a key s and a string $x \in \{0,1\}^*$ of length $L < 2^n$, do the following:
 1. Set $B := \left\lfloor \frac{L}{n} \right\rfloor$ (i.e., the number of blocks in x). Pad x with zeros so its length is a multiple of n. Parse the padded result as the sequence of n-bit blocks x_1, \ldots, x_B. Set $x_{B+1} := L$, where L is encoded as an n-bit string.
 2. Set $z_0 := 0^n$. (This is also called the IV.)
 3. For $i = 1, \ldots, B + 1$, compute $z_i := h^s(z_{i-1} || x_i)$.
 4. Output z_{B+1}.
Security of Merkle-Damgard

Theorem: If \((\text{Gen}, h)\) is collision resistant, then so is \((\text{Gen}, H)\).
Message Authentication Using Hash Functions
Hash-and-Mac Construction

Let $\Pi = (Mac, Vrfy)$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (Gen_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (Gen', Mac', Vrfy')$ for arbitrary-length messages as follows:

• Gen': on input 1^n, choose uniform $k \in \{0,1\}^n$ and run $Gen_H(1^n)$ to obtain s. The key is $k' := \langle k, s \rangle$.

• Mac': on input a key $\langle k, s \rangle$ and a message $m \in \{0,1\}^*$, output $t \leftarrow Mac_k(H^s(m))$.

• $Vrfy'$: on input a key $\langle k, s \rangle$, a message $m \in \{0,1\}^*$, and a MAC tag t, output 1 if and only if $Vrfy_k(H^s(m), t) = 1$.
Security of Hash-and-MAC

Theorem: If Π is a secure MAC for messages of length ℓ and Π_H is collision resistant, then the construction above is a secure MAC for arbitrary-length messages.
Proof Intuition

Let Q be the set of messages m queried by adversary A.

Assume A manages to forge a tag for a message $m^* \notin Q$.

There are two cases to consider:

1. $H^S(m^*) = H^S(m)$ for some message $m \in Q$. Then A breaks collision resistance of H^S.

2. $H^S(m^*) \neq H^S(m)$ for all messages $m \in Q$. Then A forges a valid tag with respect to MAC Π.