1. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key \(k_A \) with Alice and a different key \(k_B \) with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?

2. Consider the following key-exchange protocol:

- **Common input:** The security parameter \(1^n \).
- (a) Alice runs \(G(1^n) \) to obtain \((G, q, g)\).
- (b) Alice chooses \(x_1, x_2 \leftarrow Z_q \) and sends \(\alpha = x_1 + x_2 \) to Bob.
- (c) Bob chooses \(x_3 \leftarrow Z_q \) and sends \(h_2 = g^{x_3} \) to Alice.
- (d) Alice sends \(h_3 = g^{x_2 \cdot x_3} \) to Bob.
- (e) Alice outputs \(h_2^{x_1} \cdot h_3^{-1} \). Bob outputs \((g^\alpha)^{x_3} \cdot (h_3)^{-1} \).

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

3. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.

4. Consider the following variant of El Gamal encryption. Let \(p = 2q + 1 \), let \(G \) be the group of squares modulo \(p \), and let \(g \) be a generator of \(G \). The private key is \((G, g, q, x) \) and the public key is \(G, g, q, h \), where \(h = g^x \) and \(x \in Z_q \) is chosen uniformly. To encrypt a message \(m \in Z_q \), choose a uniform \(r \in Z_q \), compute \(c_1 := g^r \ mod p \) and \(c_2 := h^r + m \ mod p \), and let the ciphertext be \((c_1, c_2) \). Is this scheme CPA-secure? Prove your answer.

5. Consider the following modified version of padded RSA encryption: Assume messages to be encrypted have length exactly \(||N||/2 \). To encrypt, first compute \(\hat{m} := 0x00 || r || 0x00 || m \) where \(r \) is a uniform string of length \(||N||/2 - 16 \). Then compute the ciphertext \(c := [\hat{m}^d \ mod N] \). When decrypting a ciphertext \(c \), the receiver computes \(\hat{m} := [c^d \ mod N] \) and returns an error if \(\hat{m} \) does not consist of 0x00 followed by \(||N||/2 - 16 \) arbitrary bits followed by 0x00. Show that this scheme is not CCA-secure. Why is it easier to construct a chosen-ciphertext attack on this scheme than on PKCS #1 v1.5?

6. In Section 12.4.1 we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.