1. What is the effect of a dropped ciphertext block (e.g., if the transmitted ciphertext \(c_1, c_2, c_3, \ldots\) is received as \(c_1, c_3, \ldots\)) when using the CBC, OFB, and CTR modes of operation?

2. Recall our construction of CPA-secure encryption from PRF (Construction 3.30 in the textbook). Show that while providing secrecy, this encryption scheme does not provide message integrity. Specifically, show that an attacker who sees a ciphertext \(c := \langle r, s \rangle\), but does not know the secret key \(k\) or the message \(m\) that is encrypted, can still create a ciphertext \(c'\) that encrypts \(m \oplus 1^n\).

3. Say \(\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})\) is a secure MAC, and for \(k \in \{0, 1\}^n\), the tag-generation algorithm \(\text{Mac}_k\) always outputs tags of length \(t(n)\). Prove that \(t\) must be super-logarithmic or, equivalently, that if \(t(n) = O(\log n)\) then \(\Pi\) cannot be a secure MAC.

 Hint: Consider the probability of randomly guessing a valid tag.

4. Consider the following MAC for messages of length \(\ell(n) = 2n - 2\) using a pseudorandom function \(F\): On input a message \(m_0||m_1\) (with \(|m_0| = |m_1| = n - 1\)) and key \(k \in \{0, 1\}^n\), algorithm \(\text{Mac}\) outputs \(t = F_k(0||m_0)||F_k(1||m_1)\). Algorithm \(\text{Vrfy}\) is defined in the natural way. Is \((\text{Gen}, \text{Mac}, \text{Vrfy})\) secure? Prove your answer.

5. Let \(F\) be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticated fixed-length messages. (In each case \(\text{Gen}\) outputs a uniform \(k \in \{0, 1\}^n\). Let \(\langle i \rangle\) denote an \(n/2\)-bit encoding of the integer \(i\).)

 (a) To authenticate a message \(m = m_1, \ldots, m_\ell\), where \(m_i \in \{0, 1\}^n\), compute \(t := F_k(m_1) \oplus \cdots \oplus F_k(m_\ell)\).

 (b) To authenticate a message \(m = m_1, \ldots, m_\ell\), where \(m_i \in \{0, 1\}^{n/2}\), compute \(t := F_k(\langle 1 \rangle||m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle||m_\ell)\).