## Introduction to Cryptology

Lecture 8

#### Announcements

- HW3 due today
- HW4 up on course webpage, due Tuesday, 3/1
- Graded HW1 returned at the end of class.

# Agenda

- Last time:
  - Constructing computationally secure SKE from PRG (Sec. 3.3)
  - Stream Ciphers
- This time:
  - CPA Security (Sec. 3.4)
  - Pseudorandom Functions (PRF) (Sec. 3.5)
  - Constructing CPA-secure encryption from PRF (Sec. 3.5)

## **CPA-Security**

The CPA Indistinguishability Experiment  $PrivK^{cpa}_{A,\Pi}(n)$ :

- 1. A key k is generated by running  $Gen(1^n)$ .
- 2. The adversary A is given input  $1^n$  and oracle access to  $Enc_k(\cdot)$ , and outputs a pair of messages  $m_0, m_1$  of the same length.
- 3. A random bit  $b \leftarrow \{0,1\}$  is chosen, and then a challenge ciphertext  $c \leftarrow Enc_k(m_b)$  is computed and given to A.
- 4. The adversary A continues to have oracle access to  $Enc_k(\cdot)$ , and outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

## **CPA-Security**

Definition: A private-key encryption scheme  $\Pi = (Gen, Enc, Dec)$  has indistinguishable encryptions under a chosen-plaintext attack if for all ppt adversaries A there exists a negligible function negl such that

$$\Pr\left[\operatorname{PrivK^{cpa}}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + \operatorname{negl}(n),$$

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

#### CPA-security for multiple encryptions

Theorem: Any private-key encryption scheme that has indistinguishable encryptions under a chosen-plaintext attack also has indistinguishable multiple encryptions under a chosen-plaintext attack.

### CPA-secure Encryption Must Be Probabilisitic

Theorem: If  $\Pi = (Gen, Enc, Dec)$  is an encryption scheme in which Enc is a deterministic function of the key and the message, then  $\Pi$  cannot be CPA-secure.

Why not?

### Constructing CPA-Secure Encryption Scheme

### **Pseudorandom Function**

Definition: A keyed function  $F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$  is a two-input function, where the first input is called the key and denoted k.

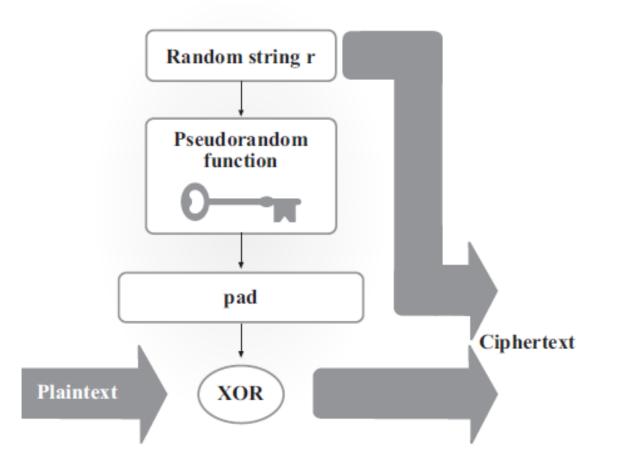
## **Pseudorandom Function**

Definition: Let  $F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$  be an efficient, length-preserving, keyed function. We say that F is a pseudorandom function if for all ppt distinguishers D, there exists a negligible function negl such that:

$$\left| \Pr\left[ D^{F_k(\cdot)}(1^n) = 1 \right] - \Pr\left[ D^{f(\cdot)}(1^n) = 1 \right] \right|$$
  
 
$$\leq negl(n).$$

where  $k \leftarrow \{0,1\}^n$  is chosen uniformly at random and f is chosen uniformly at random from the set of all functions mapping n-bit strings to n-bit strings.

### Construction of CPA-Secure Encryption from PRF



# Formal Description of Construction

Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

- Gen: on input  $1^n$ , choose  $k \leftarrow \{0,1\}^n$  uniformly at random and output it as the key.
- Enc: on input a key  $k \in \{0,1\}^n$  and a message  $m \in \{0,1\}^n$ , choose  $r \leftarrow \{0,1\}$  uniformly at random and output the ciphertext

 $c \coloneqq \langle r, F_k(r) \oplus m \rangle.$ 

• *Dec*: on input a key  $k \in \{0,1\}^n$  and a ciphertext  $c = \langle r, s \rangle$ , output the plaintext message

$$m \coloneqq F_k(r) \oplus s.$$