The One-Time Pad (Vernam’s Cipher)

* [n 1917, Vernam patented a cipher now called
the one-time pad that obtains perfect secrecy.

* There was no proof of this fact at the time.

e 25 years later, Shannon introduced the notion
of perfect secrecy and demonstrated that the
one-time pad achieves this level of security.

The One-Time Pad Scheme

Fix an integer £ > 0. Then the message space M, key
space K, and ciphertext space C are all equal to

{0,1}*.

. The key-generation algorithm Gen works by choosing

a string from K = {0,1}* according to the uniform
distribution.

Encryption Enc works as follows: given a key
k € {0,1}*, and a message m € {0,1}*,output
c:=k & m.

Decryption Dec works as follows: given a key
k € {0,1}¢, and a ciphertext ¢ € {0,1}?, output
m: =k & c.

Security of OTP

Theorem: The one-time pad encryption scheme
is perfectly secure.

Proof

Proof: Fix some distribution over M and fix an
arbitrary m € M and ¢ € C. For one-time pad:

PriC=c|M=m]=PrIM@® K =c|M =m]

::pr[m@K:C]:Pr[K=m@C]:%

Since this holds for all distributions and all m, we
have that for every probability distribution over M,
every mg,m; € M andeveryc € C

1
PriC =c|M =m,] = ?=Pr[C=C|M=m1]

Drawbacks of OTP

e Key length is the same as the message length.

— For every bit communicated over a public channel,
a bit must be shared privately.

— We will see this is not just a problem with the OTP
scheme, but an inherent problem in perfectly
secret encryption schemes.

e Key can only be used once.

— You will see in the homework that this is also an
inherent problem.

Some Examples

Is the following scheme perfectly secret?

Message space M = {0,1,...,n — 1}. Key
space K = {0,1,..,n—1}.

Gen() chooses a key k at random from K.
Enc, (m) returnsm + k.
Dec,(c) returnsc — k.

Some Examples

Is the following scheme perfectly secret?

Message space M = {0,1,...,n — 1}. Key
space K = {0,1,..,n—1}.

Gen() chooses a key k at random from K.
Enc, (m) returns m + k mod n.
Dec, (c) returns c — k mod n.

Limitations of Perfect Secrecy

Theorem: Let (Gen, Enc, Dec) be a perfectly-
secret encryption scheme over a message space

M, and let K be the key space as determined by
Gen. Then |K| = |M|.

Proof

Proof (by contradiction): We show that if
|K| < |M| then the scheme cannot be perfectly
secret.

* Assume |K| < |M|. Consider the uniform
distribution over M and let ¢ € C.

* Let M(c) be the set of all possible messages
which are possible decryptions of c.

M(c) == {f | i = Decy(c)for some k € K}

Proof

M(c) == {m | M = Decy(c)for some k € K}
 IM(c)| < |K|. Why?

 Since we assumed |K| < |M|, this means that
there is some m’ € M such thatm’ & M(c).

e But then
PriM =m'|C =c] =0 # Pr[M =m/]
And so the scheme is not perfectly secret.

Shannon’s Theorem

Let (Gen, Enc, Dec) be an encryption scheme
with message space M, for which |M| = |K| =
|C|. The scheme is perfectly secret if and only if:

1. Every key k € K is chosen with equal
probability 1/|K| by algorithm Gen.

2. Foreverym € M and every ¢ € C, there
exists a unique key k € K such that Encg,(m)
outputs c.

**Theorem only applies when |M| = |K| = |C].

Some Examples

Is the following scheme perfectly secret?

Message space M = {0,1,...,n — 1}. Key
space K = {0,1,...,n—1}.

Gen() chooses a key k at random from K.
Enc, (m) returnsm + k.
Decy(c) returnsc — k.

Some Examples

Is the following scheme perfectly secret?

Message space M = {0,1,...,n — 1}. Key
space K = {0,1,...,n—1}.

Gen() chooses a key k at random from K.
Enc, (m) returns m + k mod n.
Decy(c) returns c — k mod n.

The Computational Approach to
Security
“An encryption scheme is secure if no adversary

learns meaningful about the
plaintext after seeing the ciphertext”

How do you formalize learns meaningful
?

The Computational Approach to
Security

* Meaningful Information about plaintext m:
— f(m) for an efficiently computable function f

* Learn Meaningful Information from the
ciphertext:

— An efficient algorithm that can output f (m) after
seeing ¢ but could not output f(m) before seeing c.

* Learn Meaningful Information:

— The change in probability that an efficient algorithm
can output f(m) after seeing ¢ and can output f(m)
before seeing c is significant.

Note:

* The intuitive definition from the previous slide
is known as “semantic security.”

 We will first see a different, simpler definition
known as indistinguishability.

e Later we will see that the two definitions are
provably equivalent.

The Computational Approach

Two main relaxations:

1. Security is only guaranteed against efficient
adversaries that run for some feasible amount of

time.

2. Adversaries can potentially succeed with some
very small probability.

Security Parameter

Integer valued security parameter denoted by n
that parameterizes both the cryptographic
schemes as well as all involved parties.

When honest parties initialize a scheme, they
choose some value n for the security parameter.

Can think of security parameter as corresponding
to the length of the key.

Security parameter is assumed to be known to
any adversary attacking the scheme.

View run time of the adversary and its success
probability as functions of the security parameter.

Polynomial Time

* Efficient adversaries = Polynomial time
adversaries

— There is some polynomial p such that the
adversary runs for time at most p(n) when the
security parameter is n.

— Honest parties also run in polynomial time.

— The adversary may be much more powerful than
the honest parties.

Negligible

* Small probability of success = negligible
probability

— A function f is negligible if for every polynomial p
and all sufficiently large values of n it holds that

fn) < — p(n)

— Intuition, f(n) < n~¢ for every constant ¢, as n
goes to infinity.

N

@ 4

by, |,_.

Negligible

