Introduction to Cryptology

Lecture 12

Announcements

- HW5 due today
- Midterm next class
 - Review sheet and solutions
 - Cheat sheet will be included in exam

Agenda

- Last time:
 - Constructing MAC from PRF
- This time:
 - Domain extension for MACs (4.4)
 - Class Exercise
 - CCA security (3.7)

Domain Extension for MACs

CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ . The basic CBC-MAC construction is as follows:

- Mac: on input a key $k \in \{0,1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following:
 - 1. Parse m as $m=m_1,\ldots,m_\ell$ where each m_i is of length n.
 - 2. Set $t_0 \coloneqq 0^n$. Then, for i = 1 to ℓ : Set $t_i \coloneqq F_k(t_{i-1} \oplus m_i)$.

Output t_{ℓ} as the tag.

• Vrfy: on input a key $k \in \{0,1\}^n$, a message m, and a tag t, do: If m is not of length $\ell(n) \cdot n$ then output 0. Otherwise, output 1 if and only if $t = Mac_k(m)$.

CBC-MAC

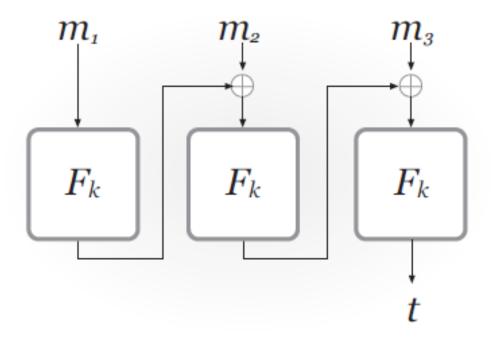


FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Chosen Ciphertext Security

CCA Security

The CCA Indistinguishability Experiment $PrivK^{cca}_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
- 3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
- 4. The adversary A continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

CCA Security

A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosen-ciphertext attack if for all ppt adversaries A there exists a negligible function negl such that

$$\Pr\left[PrivK^{cca}_{A,\Pi}(n) = 1\right] \leq \frac{1}{2} + negl(n),$$

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

Authenticated Encryption

The unforgeable encryption experiment $EncForge_{A,\Pi}(n)$:

- 1. Run $Gen(1^n)$ to obtain key k.
- 2. The adversary A is given input 1^n and access to an encryption oracle $Enc_k(\cdot)$. The adversary outputs a ciphertext c.
- 3. Let $m \coloneqq Dec_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if $(1) \ m \neq \bot$ and $(2) \ m \notin Q$.