
Introduction to Cryptology 

Lecture 6 



Announcements 

• Homework 2 due today 

• Homework 3 will go out on Tuesday 

• Homework 1 solutions and grades up on 
Canvas 



Agenda 

• This time: 

– Finish limitations of perfect secrecy (2.3) 

– Computational Approach to Cryptography (3.1) 

– Defining Computationally Secure Encryption (3.2) 

– Constructing Secure Encryption Schemes (3.3) 



Limitations of Perfect Secrecy 

Theorem:  Let (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) be a perfectly-
secret encryption scheme over a message space 
𝑴, and let 𝑲 be the key space as determined by 
𝐺𝑒𝑛.  Then 𝑲 ≥ |𝑴|. 

 



Proof 

Proof (by contradiction):  We show that if 
𝑲 < |𝑴| then the scheme cannot be perfectly 

secret. 

• Assume 𝑲 < 𝑴 .  Consider the uniform 
distribution over 𝑴 and let 𝑐 ∈ 𝑪. 

• Let 𝑴(𝑐) be the set of all possible messages 
which are possible decryptions of 𝑐. 

𝑴 𝑐 ≔ 𝑚    𝑚 = 𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑲} 



Proof 

𝑴 𝑐 ≔ { 𝑚  | 𝑚 = 𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑲} 

• 𝑴 𝑐 ≤ |𝑲|.  Why? 

• Since we assumed 𝑲 < |𝑴|, this means that 
there is some 𝑚′ ∈ 𝑴 such that 𝑚′ ∉ 𝑴 𝑐 . 

• But then 
Pr 𝑀 = 𝑚′| 𝐶 = 𝑐 = 0 ≠ Pr[𝑀 = 𝑚′] 

And so the scheme is not perfectly secret. 



Shannon’s Theorem 

Let (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) be an encryption scheme 
with message space 𝑴, for which 𝑴 = 𝑲 =
|𝑪|.  The scheme is perfectly secret if and only if: 

1. Every key 𝑘 ∈ 𝑲 is chosen with equal 
probability 1/|𝑲| by algorithm 𝐺𝑒𝑛. 

2. For every 𝑚 ∈ 𝑴 and every 𝑐 ∈ 𝑪, there 
exists a unique key 𝑘 ∈ 𝑲 such that 𝐸𝑛𝑐𝑘(𝑚) 
outputs 𝑐. 

**Theorem only applies when 𝑴 = 𝑲 = |𝑪|. 



Some Examples 

• Is the following scheme perfectly secret? 

• Message space 𝑴 = {0,1, … , 𝑛 − 1}.  Key 
space 𝑲 =  {0,1, … , 𝑛 − 1}. 

• Gen() chooses a key 𝑘 at random from 𝑲.   

• Enc𝑘 𝑚  returns 𝑚 +  𝑘.   

• 𝐷𝑒𝑐𝑘 𝑐  returns 𝑐 −  𝑘. 

 



Some Examples 

• Is the following scheme perfectly secret? 

• Message space 𝑴 = {0,1, … , 𝑛 − 1}.  Key 
space 𝑲 =  {0,1, … , 𝑛 − 1}. 

• Gen() chooses a key 𝑘 at random from 𝑲.   

• Enc𝑘 𝑚  returns 𝑚 +  𝑘 𝑚𝑜𝑑 𝑛.   

• 𝐷𝑒𝑐𝑘 𝑐  returns 𝑐 −  𝑘 𝑚𝑜𝑑 𝑛. 

 



The Computational Approach to 
Security 

“An encryption scheme is secure if no adversary 
learns meaningful information about the 
plaintext after seeing the ciphertext” 

 

How do you formalize learns meaningful 
information? 

 



The Computational Approach to 
Security 

• Meaningful Information about plaintext m: 
– 𝑓(𝑚) for an efficiently computable function 𝑓  

• Learn Meaningful Information from the 
ciphertext: 
– An efficient algorithm that can output 𝑓(𝑚) after 

seeing 𝑐 but could not output 𝑓 𝑚  before seeing 𝑐. 

• Learn Meaningful Information: 
– The change in probability that  an efficient algorithm 

can output 𝑓(𝑚) after seeing 𝑐 and can output 𝑓 𝑚  
before seeing 𝑐 is significant. 

 



Note: 

• The intuitive definition from the previous slide 
is known as “semantic security.” 

• We will first see a different, simpler definition 
known as indistinguishability. 

• Later we will see that the two definitions are 
provably equivalent. 



The Computational Approach 

Two main relaxations: 

1. Security is only guaranteed against efficient 
adversaries that run for some feasible amount of 
time. 

2. Adversaries can potentially succeed with some 
very small probability. 



Security Parameter 

• Integer valued security parameter denoted by n 
that parameterizes both the cryptographic 
schemes as well as all involved parties. 

• When honest parties initialize a scheme, they 
choose some value n for the security parameter. 

• Can think of security parameter as corresponding 
to the length of the key. 

• Security parameter is assumed to be known to 
any adversary attacking the scheme. 

• View run time of the adversary and its success 
probability as functions of the security parameter. 



Polynomial Time 

• Efficient adversaries = Polynomial time 
adversaries 

– There is some polynomial 𝑝 such that the 
adversary runs for time at most 𝑝(𝑛) when the 
security parameter is 𝑛. 

– Honest parties also run in polynomial time. 

– The adversary may be much more powerful than 
the honest parties. 



Negligible 

• Small probability of success = negligible 
probability 

– A function 𝑓 is negligible if for every polynomial 𝑝 
and all sufficiently large values of 𝑛 it holds that 

𝑓 𝑛 <  
1

𝑝(𝑛)
. 

– Intuition, 𝑓 𝑛 < 𝑛−𝑐  for every constant 𝑐, as 𝑛 
goes to infinity. 



Negligible 


