
Introduction to Cryptology

Lecture 6

Announcements

• Homework 2 due today

• Homework 3 will go out on Tuesday

• Homework 1 solutions and grades up on
Canvas

Agenda

• This time:

– Finish limitations of perfect secrecy (2.3)

– Computational Approach to Cryptography (3.1)

– Defining Computationally Secure Encryption (3.2)

– Constructing Secure Encryption Schemes (3.3)

Limitations of Perfect Secrecy

Theorem: Let (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) be a perfectly-
secret encryption scheme over a message space
𝑴, and let 𝑲 be the key space as determined by
𝐺𝑒𝑛. Then 𝑲 ≥ |𝑴|.

Proof

Proof (by contradiction): We show that if
𝑲 < |𝑴| then the scheme cannot be perfectly

secret.

• Assume 𝑲 < 𝑴 . Consider the uniform
distribution over 𝑴 and let 𝑐 ∈ 𝑪.

• Let 𝑴(𝑐) be the set of all possible messages
which are possible decryptions of 𝑐.

𝑴 𝑐 ≔ 𝑚 𝑚 = 𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑲}

Proof

𝑴 𝑐 ≔ { 𝑚 | 𝑚 = 𝐷𝑒𝑐𝑘 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑲}

• 𝑴 𝑐 ≤ |𝑲|. Why?

• Since we assumed 𝑲 < |𝑴|, this means that
there is some 𝑚′ ∈ 𝑴 such that 𝑚′ ∉ 𝑴 𝑐 .

• But then
Pr 𝑀 = 𝑚′| 𝐶 = 𝑐 = 0 ≠ Pr[𝑀 = 𝑚′]

And so the scheme is not perfectly secret.

Shannon’s Theorem

Let (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) be an encryption scheme
with message space 𝑴, for which 𝑴 = 𝑲 =
|𝑪|. The scheme is perfectly secret if and only if:

1. Every key 𝑘 ∈ 𝑲 is chosen with equal
probability 1/|𝑲| by algorithm 𝐺𝑒𝑛.

2. For every 𝑚 ∈ 𝑴 and every 𝑐 ∈ 𝑪, there
exists a unique key 𝑘 ∈ 𝑲 such that 𝐸𝑛𝑐𝑘(𝑚)
outputs 𝑐.

**Theorem only applies when 𝑴 = 𝑲 = |𝑪|.

Some Examples

• Is the following scheme perfectly secret?

• Message space 𝑴 = {0,1, … , 𝑛 − 1}. Key
space 𝑲 = {0,1, … , 𝑛 − 1}.

• Gen() chooses a key 𝑘 at random from 𝑲.

• Enc𝑘 𝑚 returns 𝑚 + 𝑘.

• 𝐷𝑒𝑐𝑘 𝑐 returns 𝑐 − 𝑘.

Some Examples

• Is the following scheme perfectly secret?

• Message space 𝑴 = {0,1, … , 𝑛 − 1}. Key
space 𝑲 = {0,1, … , 𝑛 − 1}.

• Gen() chooses a key 𝑘 at random from 𝑲.

• Enc𝑘 𝑚 returns 𝑚 + 𝑘 𝑚𝑜𝑑 𝑛.

• 𝐷𝑒𝑐𝑘 𝑐 returns 𝑐 − 𝑘 𝑚𝑜𝑑 𝑛.

The Computational Approach to
Security

“An encryption scheme is secure if no adversary
learns meaningful information about the
plaintext after seeing the ciphertext”

How do you formalize learns meaningful
information?

The Computational Approach to
Security

• Meaningful Information about plaintext m:
– 𝑓(𝑚) for an efficiently computable function 𝑓

• Learn Meaningful Information from the
ciphertext:
– An efficient algorithm that can output 𝑓(𝑚) after

seeing 𝑐 but could not output 𝑓 𝑚 before seeing 𝑐.

• Learn Meaningful Information:
– The change in probability that an efficient algorithm

can output 𝑓(𝑚) after seeing 𝑐 and can output 𝑓 𝑚
before seeing 𝑐 is significant.

Note:

• The intuitive definition from the previous slide
is known as “semantic security.”

• We will first see a different, simpler definition
known as indistinguishability.

• Later we will see that the two definitions are
provably equivalent.

The Computational Approach

Two main relaxations:

1. Security is only guaranteed against efficient
adversaries that run for some feasible amount of
time.

2. Adversaries can potentially succeed with some
very small probability.

Security Parameter

• Integer valued security parameter denoted by n
that parameterizes both the cryptographic
schemes as well as all involved parties.

• When honest parties initialize a scheme, they
choose some value n for the security parameter.

• Can think of security parameter as corresponding
to the length of the key.

• Security parameter is assumed to be known to
any adversary attacking the scheme.

• View run time of the adversary and its success
probability as functions of the security parameter.

Polynomial Time

• Efficient adversaries = Polynomial time
adversaries

– There is some polynomial 𝑝 such that the
adversary runs for time at most 𝑝(𝑛) when the
security parameter is 𝑛.

– Honest parties also run in polynomial time.

– The adversary may be much more powerful than
the honest parties.

Negligible

• Small probability of success = negligible
probability

– A function 𝑓 is negligible if for every polynomial 𝑝
and all sufficiently large values of 𝑛 it holds that

𝑓 𝑛 <
1

𝑝(𝑛)
.

– Intuition, 𝑓 𝑛 < 𝑛−𝑐 for every constant 𝑐, as 𝑛
goes to infinity.

Negligible

