Introduction to Cryptology

Lecture 4

Announcements

- HW1 due today
- HW2 up on course webpage. Due on 2/12.
- Readings up on course webpage (by 2/10)
- In-class group exercise on 2/10.

Agenda

- Last time:
 - Definition of SKE (2.1)
 - Definition of perfect secrecy (2.1)

- This time:
 - Equivalent formulations (2.1)
 - Constructions of perfectly secret schemes (2.2)
 - Limitations of perfect secrecy (2.3)

Definition of Perfect Secrecy

An encryption scheme (*Gen, Enc, Dec*) over a message space *M* is perfectly secret if for every probability distribution over *M*, every message *m* ∈ *M*, and every ciphertext *c* ∈ *C* for which Pr[*C* = *c*] > 0: Pr[*M* = *m* |*C* = *c*] = Pr[*M* = *m*].

An Equivalent Formulation

Lemma: An encryption scheme
 (*Gen, Enc, Dec*) over a message space *M* is
 perfectly secret if and only if for every
 probability distribution over *M*, every message
 m ∈ *M*, and every ciphertext *c* ∈ *C*:
 Pr[*C* = *c* |*M* = *m*] = Pr[*C* = *c*].

Proof: \rightarrow

• To prove: If an encryption scheme is perfectly secret then

"for every probability distribution over M, every message $m \in M$, and every ciphertext $c \in C$: $\Pr[C = c | M = m] = \Pr[C = c]$."

Proof (cont'd)

- Fix some probability distribution over M, some message $m \in M$, and some ciphertext $c \in C$.
- By perfect secrecy we have that

$$\Pr[M = m | C = c] = \Pr[M = m].$$

• By Bayes' Theorem we have that: $Pr[M = m | C = c] = \frac{Pr[C = c | M = m] \cdot Pr[M = m]}{Pr[C = c]} = Pr[M = m].$

• Rearranging terms we have: Pr[C = c | M = m] = Pr[C = c].

Perfect Indistinguishability

• Lemma: An encryption scheme (Gen, Enc, Dec) over a message space M is perfectly secret if and only if for every probability distribution over M, every $m_0, m_1 \in M$, and every ciphertext $c \in C$: $\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1]$.

Proof (Preliminaries)

- Let $F, E_1, ..., E_n$ be events such that $\Pr[E_1 \lor \cdots \lor E_n] = 1$ and $\Pr[E_i \land E_j] = 0$ for all $i \neq j$.
- The E_i partition the space of all possible events so that with probability 1 exactly one of the events E_i occurs. Then

 $\Pr[F] = \sum_{i=1}^{n} \Pr[F \land E_i]$

Proof Preliminaries

- We will use the above in the following way:
- For each $m_i \in M$, E_{m_i} is the event that $M = m_i$.
- F is the event that C = c.
- Note $\Pr[E_{m_1} \lor \cdots \lor E_{m_n}] = 1$ and $\Pr[E_{m_i} \land E_{m_j}] = 0$ for all $i \neq j$.
- So we have:

$$-\Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m]$$
$$= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]$$

Proof:→

Assume the encryption scheme is perfectly secret. Fix messages $m_0, m_1 \in M$ and ciphertext $c \in C$. $\Pr[C = c | M = m_0] = \Pr[C = c] = \Pr[C = c | M = m_1]$

Proof ←

• Assume that for every probability distribution over M, every $m_0, m_1 \in M$, and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$:

 $\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1].$

- Fix some distribution over M, and arbitrary $m_0 \in M$ and $c \in C$.
- Define $p = \Pr[C = c | M = m_0]$.
- Note that for all m: $\Pr[C = c | M = m] = \Pr[C = c | M = m_0] = p.$

•
$$\Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m]$$

 $= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]$
 $= \sum_{m \in M} p \cdot \Pr[M = m]$
 $= p \cdot \sum_{m \in M} \Pr[M = m]$
 $= p$
 $= \Pr[C = c | M = m_0]$
Since *m* was arbitrary, we have shown that
 $\Pr[C = c] = \Pr[C = c | M = m]$ for all $c \in C, m \in M$.

So we conclude that the scheme is perfectly secret.

The One-Time Pad (Vernam's Cipher)

- In 1917, Vernam patented a cipher now called the one-time pad that obtains perfect secrecy.
- There was no proof of this fact at the time.
- 25 years later, Shannon introduced the notion of perfect secrecy and demonstrated that the one-time pad achieves this level of security.

The One-Time Pad Scheme

- 1. Fix an integer $\ell > 0$. Then the message space M, key space K, and ciphertext space C are all equal to $\{0,1\}^{\ell}$.
- 2. The key-generation algorithm *Gen* works by choosing a string from $K = \{0,1\}^{\ell}$ according to the uniform distribution.
- 3. Encryption *Enc* works as follows: given a key $k \in \{0,1\}^{\ell}$, and a message $m \in \{0,1\}^{\ell}$, output $c \coloneqq k \bigoplus m$.
- 4. Decryption *Dec* works as follows: given a key $k \in \{0,1\}^{\ell}$, and a ciphertext $c \in \{0,1\}^{\ell}$, output $m \coloneqq k \bigoplus c$.

Security of OTP

Theorem: The one-time pad encryption scheme is perfectly secure.

Proof: Fix some distribution over M and fix an arbitrary $m \in M$ and $c \in C$. For one-time pad: $\Pr[C = c \mid M = m] = \Pr[M \bigoplus K = c \mid M = m]$ $= \Pr[m \bigoplus K = c] = \Pr[K = m \bigoplus c] = \frac{1}{2^{\ell}}$

Since this holds for all distributions and all m, we have that for every probability distribution over M, every $m_0, m_1 \in M$ and every $c \in C$

$$\Pr[C = c \mid M = m_0] = \frac{1}{2^{\ell}} = \Pr[C = c \mid M = m_1]$$

Drawbacks of OTP

- Key length is the same as the message length.
 - For every bit communicated over a public channel, a bit must be shared privately.
 - We will see this is not just a problem with the OTP scheme, but an inherent problem in perfectly secret encryption schemes.
- Key can only be used once.
 - You will see in the homework that this is also an inherent problem.

Some Examples

- Is the following scheme perfectly secret?
- Message space *M* = {0,1, ..., *n* − 1}. Key space *K* = {0,1, ..., *n* − 1}.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns m + k.
- $Dec_k(c)$ returns c k.

Some Examples

- Is the following scheme perfectly secret?
- Message space *M* = {0,1,..., *n* − 1}. Key space *K* = {0,1,..., *n* − 1}.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns $m + k \mod n$.
- $Dec_k(c)$ returns $c k \mod n$.