Introduction to Cryptology

Lecture 3

Announcements

- Homework 1 due on Thursday $2 / 5$
- Hand in code for Problem 1 and decrypted ciphertext along with other solutions
- Readings up on course webpage on

Computational Complexity

- We will start computational approach to cryptography next week.

Agenda

- Last time:
- Cryptanalysis of the Vigenere Cipher (1.3)
- Terminology and Definitions
- This time:
- Terminology and Definitions
- Formal definition of a symmetric encryption scheme (2.1)
- Shannon's definition of perfect secrecy (2.1)
- Equivalent definitions (2.1)
- Construction of a perfectly secret scheme (2.2)

Terminology

- Discrete Random Variable: A discrete random variable is a variable that can take on a value from a finite set of possible different values each with an associated probability.
- Example: Bag with red, blue, yellow marbles. Random variable X describes the outcome of a random draw from the bag. The value of X can be either red, blue or yellow, each with some probability.

More Terminology

- A discrete probability distribution assigns a probability to each possible outcomes of a discrete random variable.
- Ex: Bag with red, blue, yellow marbles.
- An experiment or trial (see below) is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes, known as the sample space.
- Ex: Drawing a marble at random from the bag.
- An event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned
- Ex: A red marble is drawn.
- Ex: A red or yellow marble is drawn.

Conditional Probability

- A conditional probability measures the probability of an event given that (by assumption, presumption, assertion or evidence) another event has occurred.
- Probability of event X, conditioned on event $Y: \operatorname{Pr}[X \mid Y]$
- Example: Probability the second marble drawn will be red, conditioned on the first marble being yellow.

Basic Facts from Probability

- If two events are independent if and only if $\operatorname{Pr}[X \mid Y]=\operatorname{Pr}[X]$.
- AND of two events: $\operatorname{Pr}[X \wedge Y]=\operatorname{Pr}[X]$. $\operatorname{Pr}[Y \mid X]$
- AND of two independent events: $\operatorname{Pr}[X \wedge Y]=$ $\operatorname{Pr}[X] \cdot \operatorname{Pr}[Y]$
- OR of two events: $\operatorname{Pr}[X \vee Y] \leq \operatorname{Pr}[X]+$ $\operatorname{Pr}[Y]$
- This is called a "union bound."

Formally Defining a Symmetric Key
Encryption Scheme

Syntax

- An encryption scheme is defined by three algorithms
- Gen, Enc, Dec
- Specification of message space \boldsymbol{M} with $|\boldsymbol{M}|>1$.
- Key-generation algorithm Gen:
- Probabilistic algorithm
- Outputs a key k according to some distribution.
- Keyspace \boldsymbol{K} is the set of all possible keys
- Encryption algorithm Enc:
- Takes as input key $k \in \boldsymbol{K}$, message $m \in \boldsymbol{M}$
- Encryption algorithm may be probabilistic
- Outputs ciphertext $c \leftarrow E n c_{k}(m)$
- Ciphertext space \boldsymbol{C} is the set of all possible ciphertexts
- Decryption algorithm Dec:
- Takes as input key $k \in \boldsymbol{K}$, ciphertext $c \in \boldsymbol{C}$
- Decryption is deterministic
- Outputs message $m:=D e c_{-} k(c)$

Distributions over K, M, C

- Distribution over \boldsymbol{K} is defined by running Gen and taking the output.
- For $k \in K, \operatorname{Pr}[K=k]$ denotes the prob that the key output by Gen is equal to k.
- For $m \in \boldsymbol{M}, \operatorname{Pr}[M=m]$ denotes the prob. That the message is equal to m.
- Models a priori knowledge of adversary about the message.
- E.g. Message is English text.
- Distributions over \boldsymbol{K} and \boldsymbol{M} are independent.
- For $c \in C, \operatorname{Pr}[C=c]$ denotes the probability that the ciphertext is c.
- Given Enc, distribution over \boldsymbol{C} is fully determined by the distributions over \boldsymbol{K} and \boldsymbol{M}.

Definition of Perfect Secrecy

- An encryption scheme (Gen, Enc, Dec) over a message space \boldsymbol{M} is perfectly secret if for every probability distribution over \boldsymbol{M}, every message $m \in \boldsymbol{M}$, and every ciphertext $c \in \boldsymbol{C}$ for which $\operatorname{Pr}[C=c]>0$:

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m] .
$$

An Equivalent Formulation

- Lemma: An encryption scheme (Gen, Enc, Dec) over a message space \boldsymbol{M} is perfectly secret if and only if for every probability distribution over \boldsymbol{M}, every message $m \in \boldsymbol{M}$, and every ciphertext $c \in \boldsymbol{C}$:

$$
\operatorname{Pr}[C=c \mid M=m]=\operatorname{Pr}[C=c]
$$

Basic Logic

- Usually want to prove statements like $P \rightarrow$ Q ("if P then Q ")
- To prove a statement $P \rightarrow Q$ we may:
- Assume P is true and show that Q is true.
- Prove the contrapositive: Assume that Q is false and show that P is false.

Basic Logic

- Consider a statement $P \leftrightarrow Q$ (P if and only if Q)
- Ex: Two events X, Y are independent if and only if $\operatorname{Pr}[X \wedge Y]=\operatorname{Pr}[X] \cdot \operatorname{Pr}[Y]$.
- To prove a statement $P \leftrightarrow Q$ it is sufficient to prove:
$-P \rightarrow Q$
$-Q \rightarrow P$

Proof (Preliminaries)

- Recall Bayes' Theorem:

$$
-\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \cdot \operatorname{Pr}[A]}{\operatorname{Pr}[B]}
$$

- We will use it in the following way:

$$
-\operatorname{Pr}[M=m \mid C=c]=\frac{\operatorname{Pr}[C=c \mid M=m] \cdot \operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]}
$$

Proof

Proof: \rightarrow

- To prove: If an encryption scheme is perfectly secret then
"for every probability distribution over \boldsymbol{M}, every message $m \in \boldsymbol{M}$, and every ciphertext $c \in \boldsymbol{C}$:

$$
\operatorname{Pr}[C=c \mid M=m]=\operatorname{Pr}[C=c] . "
$$

Proof (cont'd)

- Fix some probability distribution over \boldsymbol{M}, some message $m \in \boldsymbol{M}$, and some ciphertext $c \in \boldsymbol{C}$.
- By perfect secrecy we have that

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

- By Bayes' Theorem we have that:

$$
\operatorname{Pr}[M=m \mid C=c]=\frac{\operatorname{Pr}[C=c \mid M=m] \cdot \operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]}=\operatorname{Pr}[M=m] .
$$

- Rearranging terms we have:

$$
\operatorname{Pr}[C=c \mid M=m]=\operatorname{Pr}[C=c]
$$

