Introduction to Cryptology

Lecture 24

Announcements

- Optional HW12 up on course webpage. Due on 5/14.
- Please fill out survey for final review session.
- Review problems for final exam will be up by end of the week.

Agenda

- Last time:
- RSA Encryption and Weaknesses (11.5)
- This time:
- Digital Signatures Definitions (12.2-12.3)
- RSA Signatures (12.4)
- Dlog-based signatures (12.5)

Digital Signatures Definition

A digital signature scheme consists of three ppt algorithms (Gen, Sign, Vrfy) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1^{n} and outputs a pair of keys ($p k, s k$). We assume that $p k, s k$ each have length at least n, and that n can be determined from $p k$ or $s k$.
2. The signing algorithm Sign takes as input a private key sk and a message m from some message space (that may depend on $p k$). It outputs a signature σ, and we write this as $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$.
3. The deterministic verification algorithm Vrfy takes as input a public key $p k$, a message m, and a signature σ. It outputs a bit b, with $b=1$ meaning valid and $b=0$ meaning invalid. We write this as $b:=\operatorname{Vrf} y_{p k}(m, \sigma)$.
Correctness: It is required that except with negligible probability over $(p k, s k)$ output by $\operatorname{Gen}\left(1^{n}\right)$, it holds that $\operatorname{Vrf} y_{p k}\left(m, \operatorname{Sign}_{s k}(m)\right)=1$ for every message m.

Digital Signatures Definition:

Security

Experiment SigForge ${ }_{A, \Pi}(n)$:

1. $\operatorname{Gen}\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$.
2. Adversary A is given $p k$ and access to an oracle $\operatorname{Sign} n_{s k}(\cdot)$. The adversary then outputs (m, σ). Let Q denote the set of all queries that A asked to its oracle.
3. A succeeds if and only if
4. $\operatorname{Vrf} y_{p k}(m, \sigma)=1$
5. $m \notin Q$.

In this case the output of the experiment is defined to be 1.
Definition: A signature scheme $\Pi=($ Gen, Sign,Vrfy $)$ is existentially unforgeable under an adaptive chosen-message attack, if for all ppt adversaries A, there is a negligible function neg such that:

$$
\operatorname{Pr}\left[\operatorname{SigForge} e_{A, P i}(n)=1\right] \leq n e g(n) .
$$

RSA Signatures

CONSTRUCTION 12.5

Let GenRSA be as in the text. Define a signature scheme as follows:

- Gen: on input 1^{n} run $\operatorname{GenRSA}\left(1^{n}\right)$ to obtain (N, e, d). The public key is $\langle N, e\rangle$ and the private key is $\langle N, d\rangle$.
- Sign: on input a private key $s k=\langle N, d\rangle$ and a message $m \in \mathbb{Z}_{N}^{*}$, compute the signature

$$
\sigma:=\left[m^{d} \bmod N\right] .
$$

- Vrfy: on input a public key $p k=\langle N, e\rangle$, a message $m \in \mathbb{Z}_{N}^{*}$, and a signature $\sigma \in \mathbb{Z}_{N}^{*}$, output 1 if and only if

$$
m \stackrel{?}{=}\left[\sigma^{e} \bmod N\right]
$$

The plain RSA signature scheme.

Attacks

No message attack:

Choose $s \in Z_{N}^{*}$, compute s^{e}.
Ouput ($m=s^{e}, \sigma=s$) as the forgery.

Attacks

Forging a signature on an arbitrary message:

To forge a signature on message m, choose arbitrary $m_{1}, m_{2} \neq 1$ such that $m=m_{1} \cdot m_{2}$.
Query oracle for $\left(m_{1}, \sigma_{1}\right),\left(m_{2}, \sigma_{2}\right)$.
Output (m, σ), where $\sigma=\sigma_{1} \cdot \sigma_{2}$.

RSA-FDH

CONSTRUCTION 12.6

Let GenRSA be as in the previous sections, and construct a signature scheme as follows:

- Gen: on input 1^{n}, run $\operatorname{GenRSA}\left(1^{n}\right)$ to compute (N, e, d). The public key is $\langle N, e\rangle$ and the private key is $\langle N, d\rangle$.
As part of key generation, a function $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is specified, but we leave this implicit.
- Sign: on input a private key $\langle N, d\rangle$ and a message $m \in\{0,1\}^{*}$, compute

$$
\sigma:=\left[H(m)^{d} \bmod N\right] .
$$

- Vrfy: on input a public key $\langle N, e\rangle$, a message m, and a signature σ, output 1 if and only if $\sigma^{e} \stackrel{?}{=} H(m) \bmod N$.

The RSA-FDH signature scheme.

Random Oracles

- Assume certain hash functions behave exactly like a random oracle.
- The "oracle" is a box that takes a binary string as input and returns a binary string as output.
- The internal workings of the box are unknown.
- All parties (honest parties and adversary) have access to the box.
- The box is consistent.
- Oracle implements a random function by choosing values of $H(x)$ "on the fly."

Principles of RO Model

1. If x has not been queried to H, then the value of $H(x)$ is uniform.
2. If A queries x to H, the reduction can see this query and learn x.
3. The reduction can set the value of $H(x)$ to a value of its choice, as long as this value is correctly distributed, i.e., uniform.

Security of RSA-FDH

Theorem: If the RSA problem is hard relative to GenRSA and H is modeled as a random oracle, then the construction above is secure.

PKCS \#1 v2.1

- Uses an instantiation of RSA-FDH for signing.
- SHA-1 should not be used "off-the-shelf" as an instantiation of H because output length is too small and so practical short-message attacks apply.
- In PKCS \#1 v2.1, H is constructed via repeated application of an underlying cryptographic hash function.

Signatures from the DL problem

Identification Schemes

FIGURE 12.1: A 3-round identification scheme.

Identification Schemes

The identification experiment $\operatorname{Ident}_{\mathcal{A}, \Pi}(n)$:

1. $\operatorname{Gen}\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$.
2. Adversary \mathcal{A} is given $p k$ and access to an oracle $\operatorname{Trans}_{s k}(\cdot)$ that it can query as often as it likes.
3. At any point during the experiment, \mathcal{A} outputs a message I. A uniform challenge $r \in \Omega_{p k}$ is chosen and given to \mathcal{A}, who responds with s. (We allow \mathcal{A} to continue querying $\operatorname{Trans}_{s k}(\cdot)$ even after receiving c.)
4. The experiment evaluates to 1 if and only if $\mathcal{V}(p k, r, s) \stackrel{?}{=} I$.

DEFINITION 12.8 Identification scheme $\Pi=\left(\operatorname{Gen}, \mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{V}\right)$ is secure against a passive attack, or just secure, if for all probabilistic polynomial-time adversaries \mathcal{A}, there is a negligible function negl such that:

$$
\operatorname{Pr}\left[\mid \operatorname{dent}_{\mathcal{A}, \Pi}(n)=1\right] \leq \operatorname{neg} \mid(n) .
$$

The Schnorr Identification Scheme

FIGURE 12.2: An execution of the Schnorr identification scheme.

Security Analysis

Theorem: If the Dlog problem is hard relative to G then the Schnorr identification scheme is
secure.

Security Analysis

Idea of proof:

- Oracle can generate correctly distributed transcripts without knowing x.
- How?

Security Analysis

Idea of proof:

- Given an attacker A who successfully responds to challenges with non-negligible probability, can construct an attacker A^{\prime} who extracts the discrete $\log x$ of y by ${ }^{* *}$ rewinding**.

