Introduction to Cryptology

Lecture 23

Announcements

- Optional HW11 due next class (5/7)
- Course Evaluations at the end of next class (5/7)
 - Please bring laptop or mobile device to next class
- Stay tuned for survey about review session for final exam.

Agenda

- Last time:
 - Diffie-Hellman Key Exchange (10.3)
 - Public Key Encryption Definitions (11.2)
 - El Gamal Encryption (11.4)
- This time:
 - RSA Encryption and Weaknesses (11.5)
 - Digital Signatures (12.2-12.3)

RSA Encryption

CONSTRUCTION 11.25

Let GenRSA be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1ⁿ run GenRSA(1ⁿ) to obtain N, e, and d. The public key is ⟨N, e⟩ and the private key is ⟨N, d⟩.
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \mathbb{Z}_N^*$, compute the ciphertext

 $c := [m^e \mod N].$

• Dec: on input a private key $sk = \langle N, d \rangle$ and a ciphertext $c \in \mathbb{Z}_N^*$, compute the message

$$m := [c^d \mod N].$$

The plain RSA encryption scheme.

RSA Example

$$p = 3, q = 7, N = 21$$

$$\phi(N) = 12$$

$$e = 5$$

$$d = 5$$

$$c_{(21,5)}(11) = 4^5 \mod 21 = 16 \mod 22$$

 $Enc_{(21,5)}(11) = 4^{5} \mod 21 = 16 \mod 21$ $Dec_{21,5}(16) = 16^{5} \mod 21 = 4^{5} \cdot 4^{5} \mod 21$ $= 16 \cdot 16 \mod 21 = 4$

Is Plain-RSA Secure?

• It is deterministic so cannot be secure!

Encrypting short messages using small *e*:

- When $m < N^{1/e}$, raising m to the e-th power modulo N involves no modular reduction.
- Can compute $m = c^{1/e}$ over the integers.

Encrypting a partially known message:

Coppersmith's Theorem: Let p(x) be a polynomial of degree *e*. Then in time poly(log(N), e) one can find all *m* such that $p(m) = 0 \mod N$ and $m \le N^{1/e}$.

In the following, we assume e = 3. Assume message is $m = m_1 || m_2$, where m_1 is known, but not m_2 .

So $m = 2^k \cdot m_1 + m_2$. Define $p(x) \coloneqq (2^k \cdot m_1 + x)^3 - c$. This polynomial has m_2 as a root and $m \le 2^k \le N^{1/3}$.

Encrypting related messages:

Assume the sender encrypts both m and $m + \delta$, giving two ciphertexts c_1 and c_2 .

Define $f_1(x) \coloneqq x^e - c_1$ and $f_2(x) \coloneqq (x + \delta)^e - c_2$.

x = m is a root of both polynomials.

(x - m) is a factor of both.

Use algorithm for finding gcd of polynomials.

Sending the same message to multiple receivers: $pk_1 = \langle N_1, 3 \rangle, pk_2 = \langle N_2, 3 \rangle, pk_3 = \langle N_3, 3 \rangle.$ Eavesdropper sees:

$$c_1 = m^3 \mod N_1, c_2 = m^3 \mod N_2, c_3 = m^3 \mod N_3$$

Let $N^* = N_1 \cdot N_2 \cdot N_3$.

Using Chinese remainder theorem to find $\hat{c} < N^*$ such that:

$$\hat{c} = c_1 \mod N_1$$
$$\hat{c} = c_2 \mod N_2$$
$$\hat{c} = c_3 \mod N_3.$$

Note that m^3 satisfies all three equations. Moreover, $m^3 < N^*$. Thus, we can solve for $m^3 = \hat{c}$ over the integers.

Padded RSA

CONSTRUCTION 11.29

Let GenRSA be as before, and let ℓ be a function with $\ell(n) \leq 2n - 4$ for all n. Define a public-key encryption scheme as follows:

- Gen: on input 1ⁿ, run GenRSA(1ⁿ) to obtain (N, e, d). Output the public key pk = ⟨N, e⟩, and the private key sk = ⟨N, d⟩.
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \{0, 1\}^{\|N\| \ell(n) 2}$, choose a random string $r \leftarrow \{0, 1\}^{\ell(n)}$ and interpret $\hat{m} := 1 \|r\| m$ as an element of \mathbb{Z}_N^* . Output the ciphertext

$$c := [\hat{m}^e \mod N].$$

Dec: on input a private key sk = ⟨N, d⟩ and a ciphertext c ∈ Z^{*}_N, compute

$$\hat{m} := [c^d \mod N],$$

and output the $||N|| - \ell(n) - 2$ least-significant bits of \hat{m} .

The padded RSA encryption scheme.

PKCS #1 v1.5

- Issued by RSA Labs in 1993
- Let k denote the length of N in bytes.
- Messages m to be encrypted are assumed to be a multiple of 8 bits long and can have length anywhere from 1 to k 11 bytes.
- Encryption of a message *m* that is *D*-bytes long is computed as:

 $\left[\left(0 \times 00 \left| \left| 0 \times 02 \right| \left| r \right| \left| 0 \times 00 \right| \right| m\right)^{e} \mod N\right]$

Where r is a randomly generated (k - D - 3)-byte string with none of its bytes equal to 0×00 .

Insecurity of PKCS #1 v1.5

- The random padding is too short.
- Attack:
 - − Set m = b || 0 ... 0 (with *L* 0's), $b \in \{0,1\}$
 - Encryption gives a ciphertext c with
 - $c = (0 \times 00||0 \times 02||r||0 \times 00||b||0 \cdots 0)^{e} \mod N$

- Compute
$$c' = \frac{c}{(2^L)^e} \mod N$$

- $-c' = (0 \times 00 || 0 \times 02 || r || 0 \times 00 || b)^e \mod N$
- This is only 75 bits long so an attacker can apply the "short message attack."
- r should be of length at least k/2 for security.

Insecurity of PKCS #1 v1.5

- Due to a chosen-ciphertext attack, this version should not be used.
- Updated versions should be used instead.
- Now up to v2.2

Digital Signatures

Digital Signatures Definition

A digital signature scheme consists of three ppt algorithms (Gen, Sign, Vrfy) such that:

- 1. The key-generation algorithm *Gen* takes as input a security parameter 1^n and outputs a pair of keys (pk, sk). We assume that pk, sk each have length at least n, and that n can be determined from pk or sk.
- 2. The signing algorithm Sign takes as input a private key sk and a message m from some message space (that may depend on pk). It outputs a signature σ , and we write this as $\sigma \leftarrow Sign_{sk}(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message m, and a signature σ . It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as $b \coloneqq Vrfy_{pk}(m, \sigma)$.

Correctness: It is required that except with negligible probability over (pk, sk) output by $Gen(1^n)$, it holds that $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$ for every message m.

Digital Signatures Definition: Security

Experiment $SigForge_{A,\Pi}(n)$:

- 1. $Gen(1^n)$ is run to obtain keys (pk, sk).
- 2. Adversary A is given pk and access to an oracle $Sign_{sk}(\cdot)$. The adversary then outputs (m, σ) . Let Q denote the set of all queries that A asked to its oracle.
- *3.* A succeeds if and only if

$$1. \quad Vrfy_{pk}(m,\sigma) = 1$$

2. $m \notin Q$.

In this case the output of the experiment is defined to be 1.

Definition: A signature scheme $\Pi = (Gen, Sign, Vrfy)$ is existentially unforgeable under an adaptive chosen-message attack, if for all ppt adversaries A, there is a negligible function neg such that:

$$\Pr[SigForge_{A,Pi}(n) = 1] \le neg(n).$$