Introduction to Cryptology

Lecture 23

Announcements

- Optional HW11 due next class (5/7)
- Course Evaluations at the end of next class (5/7)
- Please bring laptop or mobile device to next class
- Stay tuned for survey about review session for final exam.

Agenda

- Last time:
- Diffie-Hellman Key Exchange (10.3)
- Public Key Encryption Definitions (11.2)
- El Gamal Encryption (11.4)
- This time:
- RSA Encryption and Weaknesses (11.5)
- Digital Signatures (12.2-12.3)

RSA Encryption

CONSTRUCTION 11.25

Let GenRSA be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1^{n} run $\operatorname{GenRSA}\left(1^{n}\right)$ to obtain N, e, and d. The public key is $\langle N, e\rangle$ and the private key is $\langle N, d\rangle$.
- Enc: on input a public key $p k=\langle N, e\rangle$ and a message $m \in \mathbb{Z}_{N}^{*}$, compute the ciphertext

$$
c:=\left[m^{e} \bmod N\right] .
$$

- Dec: on input a private key $s k=\langle N, d\rangle$ and a ciphertext $c \in \mathbb{Z}_{N}^{*}$, compute the message

$$
m:=\left[c^{d} \bmod N\right] .
$$

The plain RSA encryption scheme.

RSA Example

$$
\begin{gathered}
p=3, q=7, N=21 \\
\phi(N)=12 \\
e=5 \\
d=5
\end{gathered}
$$

$E n c_{(21,5)}(11)=4^{5} \bmod 21=16 \bmod 21$
$\operatorname{Dec}_{21,5}(16)=16^{5} \bmod 21=4^{5} \cdot 4^{5} \bmod 21$ $=16 \cdot 16 \bmod 21=4$

Is Plain-RSA Secure?

- It is deterministic so cannot be secure!

Additional Attacks

Additional Attacks

Encrypting short messages using small e :

- When $m<N^{1 / e}$, raising m to the e-th power modulo N involves no modular reduction.
- Can compute $m=c^{1 / e}$ over the integers.

Additional Attacks

Encrypting a partially known message:
Coppersmith's Theorem: Let $p(x)$ be a polynomial of degree e. Then in time poly $(\log (N), e)$ one can find all m such that $p(m)=0 \bmod N$ and $m \leq N^{1 / e}$.

In the following, we assume $e=3$.
Assume message is $m=m_{1} \| m_{2}$, where m_{1} is known, but not m_{2}.
So $m=2^{k} \cdot m_{1}+m_{2}$.
Define $p(x):=\left(2^{k} \cdot m_{1}+x\right)^{3}-c$.
This polynomial has m_{2} as a root and $m \leq 2^{k} \leq N^{1 / 3}$.

Additional Attacks

Encrypting related messages:
Assume the sender encrypts both m and $m+\delta$, giving two ciphertexts c_{1} and c_{2}.
Define $f_{1}(x):=x^{e}-c_{1}$ and $f_{2}(x):=$ $(x+\delta)^{e}-c_{2}$.
$x=m$ is a root of both polynomials.
$(x-m)$ is a factor of both.
Use algorithm for finding gcd of polynomials.

Additional Attacks

Sending the same message to multiple receivers:
$p k_{1}=\left\langle N_{1}, 3\right\rangle, p k_{2}=\left\langle N_{2}, 3\right\rangle, p k_{3}=\left\langle N_{3}, 3\right\rangle$.
Eavesdropper sees:
$c_{1}=m^{3} \bmod N_{1}, c_{2}=m^{3} \bmod N_{2}, c_{3}=m^{3} \bmod N_{3}$
Let $N^{*}=N_{1} \cdot N_{2} \cdot N_{3}$.
Using Chinese remainder theorem to find $\hat{c}<N^{*}$ such that:

$$
\begin{aligned}
& \hat{c}=c_{1} \bmod N_{1} \\
& \hat{c}=c_{2} \bmod N_{2} \\
& \hat{c}=c_{3} \bmod N_{3} .
\end{aligned}
$$

Note that m^{3} satisfies all three equations. Moreover, $m^{3}<N^{*}$. Thus, we can solve for $m^{3}=\hat{c}$ over the integers.

Padded RSA

CONSTRUCTION 11.29

Let GenRSA be as before, and let ℓ be a function with $\ell(n) \leq 2 n-4$ for all n. Define a public-key encryption scheme as follows:

- Gen: on input 1^{n}, run $\operatorname{GenRS}\left(1^{n}\right)$ to obtain (N, e, d). Output the public key $p k=\langle N, e\rangle$, and the private key $s k=\langle N, d\rangle$.
- Enc: on input a public key $p k=\langle N, e\rangle$ and a message $m \in\{0,1\}^{\|N\|-\ell(n)-2}$, choose a random string $r \leftarrow\{0,1\}^{\ell(n)}$ and interpret $\hat{m}:=1\|r\| m$ as an element of \mathbb{Z}_{N}^{*}. Output the ciphertext

$$
c:=\left[\hat{m}^{e} \bmod N\right] .
$$

- Dec: on input a private key $s k=\langle N, d\rangle$ and a ciphertext $c \in \mathbb{Z}_{N}^{*}$, compute

$$
\hat{m}:=\left[c^{d} \bmod N\right],
$$

and output the $\|N\|-\ell(n)-2$ least-significant bits of \hat{m}.
The padded RSA encryption scheme.

PKCS \#1 v1.5

- Issued by RSA Labs in 1993
- Let k denote the length of N in bytes.
- Messages m to be encrypted are assumed to be a multiple of 8 bits long and can have length anywhere from 1 to $k-11$ bytes.
- Encryption of a message m that is D-bytes long is computed as:

$$
\left[(0 \times 00| | 0 \times 02\|r| | 0 \times 00\| m)^{e} \bmod N\right]
$$

Where r is a randomly generated $(k-D-3)$-byte string with none of its bytes equal to 0×00.

Insecurity of PKCS \#1 v1.5

- The random padding is too short.
- Attack:
- Set $m=b| | 0$... 0 (with L 0's), $b \in\{0,1\}$
- Encryption gives a ciphertext c with
$c=(0 \times 00\|0 \times 02\| r\|0 \times 00\| b \| 0 \cdots 0)^{e} \bmod N$
- Compute $c^{\prime}=\frac{c}{\left(2^{L}\right)^{e}} \bmod N$
$-c^{\prime}=(0 \times 00| | 0 \times 02\|r| | 0 \times 00\| \mid b)^{e} \bmod N$
- This is only 75 bits long so an attacker can apply the "short message attack."
- r should be of length at least $k / 2$ for security.

Insecurity of PKCS \#1 v1.5

- Due to a chosen-ciphertext attack, this version should not be used.
- Updated versions should be used instead.
- Now up to v2.2

Digital Signatures

Digital Signatures Definition

A digital signature scheme consists of three ppt algorithms (Gen, Sign, Vrfy) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1^{n} and outputs a pair of keys ($p k, s k$). We assume that $p k, s k$ each have length at least n, and that n can be determined from $p k$ or $s k$.
2. The signing algorithm Sign takes as input a private key sk and a message m from some message space (that may depend on $p k$). It outputs a signature σ, and we write this as $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$.
3. The deterministic verification algorithm Vrfy takes as input a public key $p k$, a message m, and a signature σ. It outputs a bit b, with $b=1$ meaning valid and $b=0$ meaning invalid. We write this as $b:=\operatorname{Vrf} y_{p k}(m, \sigma)$.
Correctness: It is required that except with negligible probability over $(p k, s k)$ output by $\operatorname{Gen}\left(1^{n}\right)$, it holds that $\operatorname{Vrf} y_{p k}\left(m, \operatorname{Sign}_{s k}(m)\right)=1$ for every message m.

Digital Signatures Definition:

Security

Experiment SigForge ${ }_{A, \Pi}(n)$:

1. $\operatorname{Gen}\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$.
2. Adversary A is given $p k$ and access to an oracle $\operatorname{Sign} n_{s k}(\cdot)$. The adversary then outputs (m, σ). Let Q denote the set of all queries that A asked to its oracle.
3. A succeeds if and only if
4. $\operatorname{Vrf} y_{p k}(m, \sigma)=1$
5. $m \notin Q$.

In this case the output of the experiment is defined to be 1.
Definition: A signature scheme $\Pi=($ Gen, Sign,Vrfy $)$ is existentially unforgeable under an adaptive chosen-message attack, if for all ppt adversaries A, there is a negligible function neg such that:

$$
\operatorname{Pr}\left[\operatorname{SigForge} e_{A, P i}(n)=1\right] \leq n e g(n) .
$$

