Introduction to Cryptology

Lecture 19

Announcements

HW9 due on Thursday, 4/23

Agenda

More Number Theory!

Extended Euclidean Algorithm Example #1

Find:
$$X, Y$$
 such that $9X + 23Y = \gcd(9,23) = 1$. $23 = 2 \cdot 9 + 5$ $9 = 1 \cdot 5 + 4$ $5 = 1 \cdot 4 + 1$ $4 = 4 \cdot 1 + 0$

$$1 = 5 - 1 \cdot 4$$

$$1 = 5 - 1 \cdot (9 - 1 \cdot 5)$$

$$1 = (23 - 2 \cdot 9) - (9 - (23 - 2 \cdot 9))$$

$$1 = 2 \cdot 23 - 5 \cdot 9$$

 $-5 = 18 \mod 23$ is the multiplicative inverse of $9 \mod 23$.

Extended Euclidean Algorithm Example #2

Find:
$$X, Y$$
 such that $5X + 33Y = \gcd(5,33) = 1$.
 $33 = 6 \cdot 5 + 3$
 $5 = 1 \cdot 3 + 2$
 $3 = 1 \cdot 2 + 1$
 $2 = 2 \cdot 1 + 0$
 $1 = 3 - 1 \cdot 2$
 $1 = 3 - (5 - 3)$

 $-13 = 20 \mod 33$ is the multiplicative inverse of $5 \mod 33$.

 $1 = (33 - 6 \cdot 5) - (5 - (33 - 6 \cdot 5))$

 $1 = 2 \cdot 33 - 13 \cdot 5$

Time Complexity of Euclidean Algorithm

When finding gcd(a, b), the "b" value gets halved every two rounds.

Why?

Time complexity: $2\log(b)$.

This is polynomial in the length of the input.

Why?

Getting Back to Z^*_{p}

Group $Z_p^* = \{1, ..., p-1\}$ operation: multiplication modulo p.

Order of a finite group is the number of elements in the group.

Order of Z^*_p is p-1.

Fermat's Little Theorem

Theorem: For prime p, integer a:

$$a^p \equiv a \bmod p$$
.

Useful Fact

Fact: For prime p and integers a, b, If $p|a \cdot b$ and $p \nmid a$, then $p \mid b$.

Corollary of Fermat's Little Theorem

Corollary: For prime p and a such that (a, p) = 1: $a^{p-1} \equiv 1 \bmod p$

Proof:

- By Fermat's Little Theorem we have that $a^p \equiv a \bmod p$. By definition of modulo, this means that $p \mid (a^p a)$. Rearranging, this implies that $p \mid a \cdot (a^p 1)$.
- Now, since gcd(a, p) = 1, we have that $p \nmid a$. Applying "useful fact" with a = a and $b = (a^p 1)$, we have that $p \mid (a^p 1)$.
- Finally, by definition of modulo, we have that $a^{p-1} \equiv 1 \mod p$.

Note: For prime p, p-1 is the order of the group Z^*_{p} .

Generalized Theorem

Theorem: Let G be a finite group with m = |G|, the order of the group. Then for any element $g \in G$, $g^m = 1$.

Corollary of Fermat's Little Theorem is a special case of the above when G is the multiplicative group $Z^*_{\ p}$ and p is prime.

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, ..., N-1\}$ have multiplicative inverses $mod\ N$?
 - a such that gcd(a, N) = 1 has multiplicative inverse by Extended Euclidean Algorithm.
 - a such that gcd(a, N) > 1 does not, since gcd(a, N) is the smallest positive integer that can be written in the form Xa + YN for integer X, Y.
- Define $Z^*_N := \{a \in \{1, ..., N-1\} | \gcd(a, N) = 1\}.$
- Z^*_N is an abelian, multiplicative group.
 - Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of Z^*_N ?
- This has a name. The order of Z_N^* is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N = p \cdot q$, where p, q are distinct primes.
 - $-\phi(N) = N p q + 1 = p \cdot q p 1 + 1 = (p-1)(q-1).$
 - Why?

Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let $N = \prod_i p_i^{e_i}$ where the $\{p_i\}$ are distinct primes and $e_i \geq 1$. Then

$$\phi(N) = \prod_{i} p_i^{e_i - 1} (p_i - 1).$$

Another Special Case of Generalized Theorem

Corollary of generalized theorem:

For a such that gcd(a, N) = 1: $a^{\phi(N)} \equiv 1 \mod N$.

Another Useful Theorem

Theorem: Let G be a finite group with m = |G| > 1. Then for any $g \in G$ and any integer x, we have $g^x = g^{x \mod m}$.

Proof: We write $x = a \cdot m + b$, where a is an integer and $b \equiv x \mod m$.

- $g^x = g^{a \cdot m + b} = (g^m)^a \cdot g^b$
- By "generalized theorem" we have that $(g^m)^a \cdot g^b = 1^a \cdot g^b = g^b = g^{x \bmod m}.$

An Example:

Compute $3^{25} \mod 35$ by hand.

$$\phi(35) = \phi(5 \cdot 7) = (5 - 1)(7 - 1) = 24$$

 $3^{25} \equiv 3^{25 \mod 24} \mod 35 \equiv 3^1 \mod 35$
 $\equiv 3 \mod 35$.