
Introduction to Cryptology 

Lecture 18 



Announcements 

• HW8 due today 

• HW9 up on course webpage.  Due on 
Thursday, 4/23. 



Agenda 

• Last time: 

– Practical constructions of block ciphers (6.2) 

• Feistel, AES, DES 

– Please read (6.2.3) on your own on Differential 
and Linear Cryptanalysis 

• This time: 

– Practical constructions of CRHF (6.3) 

– Number Theory (8.1) 

 

 



Posted lecture notes include only the Number 
Theory material. 



Modular Arithmetic 

Definition of modulo: 

We say that two integers 𝑎, 𝑏 are congruent 
modulo 𝑝 denoted by 

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑝 

If 
𝑝 | (𝑎 − 𝑏) 

(i.e. 𝑝 divides (𝑎 − 𝑏)). 



Modular Arithmetic 

Examples:  All of the following are true 
2 ≡ 15 𝑚𝑜𝑑 13 

28 ≡ 15 𝑚𝑜𝑑 13 
41 ≡ 15 𝑚𝑜𝑑 13 

 
−11 ≡ 15 𝑚𝑜𝑑 13 

 



Modular Arithmetic 

Operation:  addition mod p 

Regular addition, take modulo p. 

 

Example: 8 + 10 𝑚𝑜𝑑 13 ≡ 18 𝑚𝑜𝑑 13 ≡
5 𝑚𝑜𝑑 13. 



Properties of Addition mod p 

Consider the set 𝑍𝑝 of integers 0,1, … , 𝑝 − 1  and the operation 
addition mod p. 

• Closure:  Adding two numbers in 𝑍𝑝 and taking mod p yields a 
number in 𝑍𝑝. 

• Identitiy:  For every 𝑎 ∈ 𝑍𝑝, 0 + 𝑎 𝑚𝑜𝑑 𝑝 ≡ 𝑎 𝑚𝑜𝑑 𝑝. 

• Inverse:  For every 𝑎 ∈ 𝑍𝑝, there exists a 𝑏 ∈ 𝑍𝑝 such that 
𝑎 + 𝑏 ≡ 0 𝑚𝑜𝑑 𝑝. 
– 𝑏 is simply the negation of 𝑎 (𝑏 = −𝑎). 
– Note that using the property of inverse, we can do subtraction.  We 

define 𝑐 − 𝑑 𝑚𝑜𝑑 𝑝 to be equivalent to 𝑐 + −𝑑 𝑚𝑜𝑑 𝑝. 

• Associativity:  For every 𝑎, 𝑏, 𝑐 ∈ 𝑍𝑝: 
𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐 𝑚𝑜𝑑 𝑝. 

 

𝑍𝑝 is a group with respect to addition! 
 

 



Definition of a Group 

A group is a set 𝐺 along with a binary operation ∘ for which 
the following conditions hold: 
• Closure:  For all 𝑔, ℎ ∈ 𝐺, 𝑔 ∘ ℎ ∈ 𝐺. 
• Identity:  There exists an identity 𝑒 ∈ 𝐺 such that for all 

𝑔 ∈ 𝐺, 𝑒 ∘ 𝑔 = 𝑔 = 𝑔 ∘ 𝑒. 
• Inverse:  For all 𝑔 ∈ 𝐺 there exists an element ℎ ∈ 𝐺 such 

that 𝑔 ∘ ℎ = 𝑒 = ℎ ∘ 𝑔.  Such an ℎ is called an inverse of 𝑔. 
• Associativity:  For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, 𝑔1 ∘ 𝑔2 ∘ 𝑔3 = 𝑔1 ∘

𝑔2 ∘ 𝑔3 . 
 
When 𝐺 has a finite number of elements, we say 𝐺 is finite 
and let |𝐺| denote the order of the group. 



Abelian Group 

A group 𝐺 with operation ∘ is abelian if the 
following holds: 

• Commutativity: For all 𝑔, ℎ ∈ 𝐺, 𝑔 ∘ ℎ = ℎ ∘ 𝑔. 

 

We will always deal with finite, abelian groups. 



Other groups over the integers 

• We will be interested mainly in multiplicative 
groups over the integers, since there are 
computational problems believed to be hard 
over such groups. 

– Such hard problems are the basis of number-
theoretic cryptography. 

• Group operation is multiplication mod p, 
instead of addition mod p. 

 



Multiplication mod p 

Example: 
3 ⋅ 8 𝑚𝑜𝑑 13 ≡ 24 𝑚𝑜𝑑 13 ≡ 11 𝑚𝑜𝑑 13. 



Multiplicative Groups 

Is 𝑍𝑝 a group with respect to multiplication mod 

p? 

• Closure—YES 

• Identity—YES (1 instead of 0) 

• Associativity—YES  

• Inverse—NO  

– 0 has no inverse since there is no integer 𝑎 such 
that 0 ⋅ 𝑎 ≡ 1 𝑚𝑜𝑑 𝑝. 

 



Multiplicative Group 

For 𝑝 prime, define 𝑍∗
𝑝 = {1, … , 𝑝 − 1} with operation 

multiplication mod 𝑝. 
 

We will see that 𝑍∗
𝑝

 is indeed a multiplicative group! 

 

To prove that 𝑍∗
𝑝

 is a multiplicative group, it is sufficient 
to prove that every element has a multiplicative inverse 
(since we have already argued that all other properties of 
a group are satisfied). 
This is highly non-trivial, we will see how to prove it using 
the Euclidean Algorithm. 



Inefficient method of finding inverses 
mod p 

Example: Multiplicative inverse of 9 𝑚𝑜𝑑 11. 
9 ⋅ 1 ≡ 9 𝑚𝑜𝑑 11 

9 ⋅ 2 ≡ 18 ≡ 7 𝑚𝑜𝑑 11 
9 ⋅ 3 ≡ 27 ≡ 5 𝑚𝑜𝑑 11 
9 ⋅ 4 ≡ 36 ≡ 3 𝑚𝑜𝑑 11 
9 ⋅ 5 ≡ 45 ≡ 1 𝑚𝑜𝑑 11 

 
What is the time complexity? 

Brute force search.  In the worst case must try all 10 numbers in 𝑍∗
11 to find 

the inverse. 
 
This is exponential time!  Why?  Inputs to the algorithm are (9,11).  The 
length of the input is the length of the binary representation of (9,11).  This 
means that input size is approx. log2 11 while the runtime is approx. 
2log2 11 = 11.  The runtime is exponential in the input length. 
 
Fortunately, there is an efficient algorithm for computing inverses. 



Euclidean Algorithm 

Theorem:  Let 𝑎, 𝑝 be positive integers.  Then there 
exist integers 𝑋, 𝑌 such that 𝑋𝑎 + 𝑌𝑏 = gcd (𝑎, 𝑝). 
 
Given 𝑎, 𝑝, the Euclidean algorithm can be used to 
compute gcd (𝑎, 𝑝) in polynomial time.  The 
extended Euclidean algorithm can be used to 
compute 𝑋, 𝑌 in polynomial time. 
 
***We will see the extended Euclidean algorithm 
next class*** 



Proving 𝑍∗
𝑝 is a multiplicative group 

In the following we prove that every element in 𝑍∗
𝑝

 has a 
multiplicative inverse when 𝑝 is prime.  This is sufficient to prove that 
𝑍∗

𝑝
 is a multiplicative group. 

 

Proof.  Let 𝑎 ∈ 𝑍∗
𝑝

.  Then gcd 𝑎, 𝑝 = 1, since 𝑝 is prime. 

By the Euclidean Algorithm, we can find integers 𝑋, 𝑌 such that 
𝑎𝑋 + 𝑝𝑌 = gcd 𝑎, 𝑝 = 1. 
Rearranging terms, we get that 𝑝𝑌 = (𝑎𝑋 − 1) and so 𝑝 | (𝑎𝑋 − 1).   
By definition of modulo, this implies that 𝑎𝑋 ≡ 1 𝑚𝑜𝑑 𝑝. 
By definition of inverse, this implies that 𝑋 is the multiplicative inverse 
of 𝑎. 
 
Note:  By above, the extended Euclidean algorithm gives us a way to 
compute the multiplicative inverse in polynomial time. 


