
ENEE 459E/CMSC 498R

In-class exercise

February 10, 2015

In this in-class exercise, we will explore what it means for a problem to be intractable (i.e. it cannot
be solved by an efficient algorithm). There are two parts:

1. In the first part, we will look at problems that have no algorithmic solution. This means that
any computer program that we write for solving this problem will have some inputs on which
it will never terminate. Such problems are called undecidable. As we will see, the fact that
such problems even exist was a big surprise for mathematicians.

2. In the second part, we will look at problems which are decidable, that is, there is a computer
program that will solve the problem, given enough time. However, we will see that for some
fundamental problems, there is strong evidence that these problems require extremely large
amounts of time to solve. Indeed, the problems that we will look at in this exercise are known
as NP-complete.

Much of the text in the following is taken from “Introduction to the Theory of Computation”
by Sipser. Thomson Brooks/Cole, 1997.



ENEE 459E/CMSC 498R In-class exercise February 10, 2015

1. In 1900, mathematician David Hilbert delivered a now-famous address at the International
Congress of Mathematicians in Paris. In his lecture, he identified 23 mathematical problems
and posed them as a challenge for the coming century. Hilbert’s tenth problem was to devise
an algorithm that tests whether a polynomial has an integral root. He did not use the term
algorithm but rather “a process according to which it can be determined by a finite number
of operations.” Interestingly, in the way he phrased this problem, Hilbert explicitly asked
that an algorithm be “devised.” Thus he apparently assumed that such an algorithm must
exist–someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolvable. For math-
ematicians of that period to come to this conclusion with their intuitive concept of algorithm
would have been virtually impossible. The intuitive concept may have been adequate for giv-
ing algorithms for certain tasks, but it was useless for showing that no algorithm exists for a
particular task. Proving that an algorithm does not exist requires having a clear definition of
algorithm. Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Turing. Church used a
notational system called the λ-calculus to define algorithms. Turing did it with his “machines.”
These two definitions were shown to be equivalent. This connection between the informal notion
of algorithm and the precise definition has come to be called the Church-Turing thesis.

The Church-Turing thesis provides the definition of algorithm necessary to resolve Hilbert’s
tenth problem. In 1970, Yuri Matijasevic, building on work of Martin Davis, Hilary Putnam,
and Julia Robinson, showed that no algorithm exists for testing whether a polynomial has
integral roots.

In the following, we will consider the famous undecidable problem known as the Halting prob-
lem. Informally, the Halting problem asks, given a program M and input w, to determine
whether the program M “halts” on input x or whether it enters an infinite loop. Formally, to
solve the Halting problem, we must design an algorithm O, which takes as input a sequence of
characters 〈M,w〉, where M is interpreted as a program and w is interpreted as the input to
the program, and does the following:

• O(〈M,w〉) outputs 1 in the case that M(w) outputs 1.

• Otherwise, O(〈M,w〉) outputs 0.

We will prove that there is no algorithm for the Halting problem via a proof by contradiction.
In other words, we assume that an algorithm O exists for the Halting problem and obtain a
contradiction. This implies that an algorithm for O cannot exist. To prove this, we will use the
diagonalization method, which is also used to prove that the set of real numbers is uncountable.

We assume that algorithm O solves the Halting problem. This means that on input 〈M,w〉,
O(〈M,w〉) outputs 1 in the case that M(w) outputs 1 and O(〈M,w〉) outputs 0 otherwise.

Consider a new algorithm D which uses O as a subroutine. This new algorithm D gets input
〈M〉 (interpreted as a program). D runs O(〈M, 〈M〉〉) and outputs the opposite of what O

Page 2 of 6



ENEE 459E/CMSC 498R In-class exercise February 10, 2015

outputs. I.e. it runs O to determine the output of the program M on input 〈M〉 (so M is being
run on its own description) and outputs the opposite.

We will examine tables of behaviors for O and D. We list all programs down the rows,
M1,M2, . . . and all their descriptions across the columns, 〈M1〉, 〈M2〉, . . .. The entries tell
whether the program in a given row outputs 1 in a given column. The entry is 1 if the program
outputs 1 but is blank if it outputs some other value or enters an infinite loop. We made up
the entries in the following table to illustrate the idea.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 1 1
M2 1 1 1 1
M3

M4 1 1
. . .
. . .

Figure 1: Behaviors of machines M1,M2, . . ..

(a) For each rowMi and column 〈Mj〉 of Figure 2, consider the output of algorithmO(〈Mi, 〈Mj〉〉)
on that pair. Use Figure 1 to fill in the following table where each entry now contains the
output of O (either 0 or 1) on the corresponding pair.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1

M2

M3

M4

. . .

. . .

Figure 2: Behavior of machine O.

(b) In the following table, we add a row and column corresponding to the algorithm D defined
above. By our assumption, O is an algorithm and so is D. Therefore it must occur on
the list M1,M2, . . . of all algorithms. Use Figure 2 to fill in the following table where each
entry again contains the output of O on the corresponding pair. What happens when you
get to the entry corresponding to row D and column 〈D〉?

Page 3 of 6



ENEE 459E/CMSC 498R In-class exercise February 10, 2015

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈D〉 · · ·
M1

M2

M3

M4

. . .
D
. . .

Figure 3: Behavior of machine O with input 〈D, ∗〉 included.

2. A literal is a Boolean variable or a negated Boolean variable, as in x or x. A clause is several
literals connected with ∨s, as in (x1∨x2∨x3∨x4). A Boolean formula is in conjunctive normal
form, called a cnf-formula, if it comprises several clauses connected with ∧s, as in

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∧ x6)

It is a 3cnf formula if all the clauses have three literals.

A Boolean formula is satisfiable if some assignment of 0s and 1s to the variables makes the
formula evaluate to 1.

The 3SAT problem asks, given a 3cnf formula, to determine whether the formula is satisfiable.

It turns out that determining whether a 3cnf formula is satisfiable is believed to be a hard
problem. Specifically, for 3cnf formula on n variables, the best algorithms (that correctly solve
the problem on all inputs) run in time 2c·n for constant c < 1. Since the problem can always
be solved using exhaustive search in time 2n, the best algorithms we have are not much better
than exhaustive search. Additional evidence for the fact that 3SAT is a hard problem is that
3SAT is a type of problem that is called NP-complete. We won’t get into the specifics of
the definition here, but intuitively what this means is that if you had an efficient algorithm for
solving 3SAT , then there would be very many other hard problems that you could immediately
solve efficiently.

(a) Determine if the following 3cnf formula is satisfiable:

Φ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). (1)

Note that in order for the formula to be satisfiable it is necessary and sufficient to have
an assignment to the literals x1, x1, x2, x2, x3, x3, x4, x4 such that

• Each clause contains at least one literal set to 1.

• Two literals of the form xi, xi are set to opposite values.

Page 4 of 6



ENEE 459E/CMSC 498R In-class exercise February 10, 2015

(b) Specify an algorithm that solves 3SAT in time 2n using exhaustive search (where n is the
number of variables).

(c) In the following, we will see another hard problem known as the graph clique problem.
We will show that if there is a polynomial-time algorithm that solves the graph clique
problem, then can use it to construct a polynomial-time algorithm solving 3SAT. This
means that if we believe there is no polynomial-time algorithm for 3SAT then there must
also be no polynomial-time algorithm for graph clique.

The graph clique problem. A clique in an undirected graph is a subgraph, wherein
every two nodes are connected by an edge (i.e. a subgraph which is a complete graph). A
k-clique is a clique that contains k nodes. Figure 4 illustrates a graph having a 5-clique.

Figure 4: A graph with a 5-clique.

The graph clique problem is to determine whether a graph contains a clique of a specified
size.

Constructing an Algorithm A for solving 3SAT. Assume that B is an algorithm
solving the graph clique problem. We will use it as a subroutine to construct an algorithm
A for solving 3SAT.

On input a 3CNF formula Φ with k clauses such as

Φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck),

A will construct a graph G that is related to this 3CNF formula in the following ways:

• The nodes in graph G are organized into k groups of three nodes called triples. Each
triple corresponds to one of the clauses in Φ, and each node in a triple corresponds to
a literal in the associated clause. Label each node of G with its corresponding literal
in Φ.

Page 5 of 6



ENEE 459E/CMSC 498R In-class exercise February 10, 2015

• The edges (i.e. the connections between the nodes) in G must also be chosen by A.
It will be your task to specify how A chooses these edges.

• The graph G will have a k-clique if and only if the original 3SAT formula (which has
k clauses) was satisfiable.

A will then run B on input 〈G, k〉 to determine whether G contains a k-clique. If B deter-
mines that G contains a k-clique, then A concludes that Φ is satisfiable. If B determines
that G does not contain a k-clique, then A concludes that Φ is not satisfiable.

Specify how the algorithm A chooses the edges of G:

• Hint 1: Whether or not there is an edge between two nodes in the constructed graph
G will depend on whether the literals are (1) in the same triple (2) are labeled with
literals of the form xi, xi.

• Hint 2: Assume that Φ is satisfiable. Then there is some assignment of variables
which sets at least one literal in each clause to 1. For each clause, pick one of the
literals set to 1, to yield a multi-set which contains k literals. The graph you construct
will have a k-clique that consists of the nodes corresponding to these literals.

Page 6 of 6


