Introduction to Cryptology ENEE459E/CMSC498R: Homework 4

Due by beginning of class on 4/24/2014.

1. Exercise 4.14

2. Exercise 4.17

3. Exercise 5.2

4. Exercise 5.5

5. Number theory practice problems:
(a) Compute $3^{1000} \bmod 100$ by hand.
(b) Compute $\left[101^{4,800,000,023} \bmod 35\right]$ by hand.
(c) Let $N=p q$ be a product of two distinct primes. Show that if $\phi(N)$ and N are known, then it is possible to compute p and q in polynomial time.

Hint: Derive a quadratic equation (over the integers) in the unknown p.
(d) Let $N=p q$ be a product of two distinct primes. Show that if N and an integer d such that $3 \cdot d=1$ $\bmod \phi(N)$ are known, then it is possible to compute p and q in polynomial time.

Hint: Obtain a small list of possibilities for $\phi(N)$ and then use the previous exercise.

