
ENEE244-010x 
Digital Logic Design 

Lecture 3 



Announcements 

• Homework 1 due today. 

• Homework 2 will be posted by tonight, due 
Monday, 9/21. 

• First recitation quiz will be tomorrow on the 
material from Lectures 1 and 2. 

• Lecture notes are on course webpage. 

• Substitute next time. 

– Will cover the basics of Boolean Algebra 



Agenda 

• Last time: 

– Signed numbers and Complements (2.7) 

– Addition and Subtraction with Complements (2.8-2.9) 

 

• This time: 

– Overflow in 2’s Complement 

– Parity and Arithmetic Modulo 2 

– Error detecting/correcting codes 

– Not following presentation in textbook. 



Example of Overflow in 2’s 
complement 

• Assume ℓ = 8 

• Compute: 

 01110000 + 01011100 

 

• Compute 

 -01110000 – 01011100 

(10001111 + 1 ) + (10100011 +1 ) 

10010000 + 10100100 



Overflow in 2’s complement 

• Overflow occurs in the following cases: 

 

 

 

 

• These conditions are the same as: 
Carry-In to sign position ≠ Carry-Out from sign position 

Operation Operand A Operand B Result 

A + B ≥ 0 ≥ 0 < 0 

A+B < 0 < 0 ≥ 0 

A-B ≥ 0 < 0 < 0 

A-B < 0 ≥ 0 ≥ 0 



Aside: Please Read  
2.10.1, 2.10.2 in Textbook 

• Binary-Coded Decimal (BCD) Schemes 
– Basic idea:  Encode decimal numbers by encoding each decimal 

digit by its binary representation 
– E.g. 1510  → 0001 0101 
– Look over Table 2.7, 2.8 

• Unit distance codes 
– Basic idea:  Encode decimal numbers so that a single bit flips 

between two consecutive numbers: 
– E.g. In binary, 110 = 00012, 210 = 00102. Note that 2 bits flip. 
– In Gray code:  110 = 0001, 210 = 0011. Note that a single bit 

flips. 
– Look over Table 2.9 

• You will not be tested or quizzed on this (at this point), but 
these codes will come up again later in the course.  



Parity and Arithmetic Mod 2 

 



Parity 

• Parity 0:  A 0/1 string has an even number of 
1’s. 
– Example: 001011100 

• Parity 1:  A 0/1 string has an odd number of 
1’s. 
– Example: 101010000 

• Given a string, can also ask about the parity of 
a subset of positions 
– Example: Parity of positions 1, 3, 5, 6 in the string 

001011100 is 1. 

 



Mod 2 Arithmetic 

• (N mod 2) is the remainder when dividing N by 2 
– 0 when N is even 
– 1 when N is odd 

• Parity of a string is the sum of the bits modulo 2  
– Example: 001011100 = 0 + 0 + 1 + 0 + 1 + 1 + 1 + 0 +

0 = 4 = 0 mod 2 = 0. 

• Parity of a subset of a string is exactly the dot-product 
mod 2. 
– Example: Parity of positions 1, 3, 5, 6 in the string 

001011100 is the dot product 
101011000 ⋅ 001011100 = 1 ⋅ 0 + 0 ⋅ 0 + 1 ⋅ 1 + 0 ⋅ 0 +
1 ⋅ 1 + 1 ⋅ 1 + 0 ⋅ 1 + 0 ⋅ 0 + 0 ⋅ 0 = 3 𝑚𝑜𝑑 2 = 1. 
 



Codes for Error Detection and 
Correction 



Codes 

• Encode algorithm 𝐸𝑛𝑐(𝑚)  = 𝑐 .  𝑚 is the 
message, 𝑐  is the codeword.  

• Decode algorithm 𝐷𝑒𝑐(𝑐 )  = 𝑚 

• Typically, 𝑐  will be longer than 𝑚 and will include 
redundant information. 

• Redundancy is useful for detecting and/or 
correcting errors introduced during transmission. 

• Assume 𝑚, 𝑐  are in binary. 

• Would like to detect and/or correct the flipping of 
one or multiple bits. 



Error Detection/Correction 

• Basic properties: 
– Distance of a code:  minimum distance between any 

two codewords (number of bits that need to be 
flipped to get from one codeword to another) 

– Rate of a code:  
𝑚

𝑐 
 (length of 𝑚 / length of 𝑐 ) 

• Distance determines the maximum number of 
errors that can be detected/corrected. 

• Goal of coding theory is to construct codes with 
optimal tradeoff between distance and rate. 

• Must also have efficient encoding, decoding and 
error correcting procedures. 



Error Detection/Correction 

• Error detection:  can detect at most 𝑑𝑖𝑠𝑡-1 
errors, where 𝑑𝑖𝑠𝑡 is the minimum distance of 
the code. 

• Error correction:  can correct at most 
(𝑑𝑖𝑠𝑡 − 1)/2 errors 



Error Detection: 
Parity Check 

• Encode:  On input 𝑚 =  11001010 
– Output 𝑐  =  11001010|𝑏, where b is the parity of 𝑚. 

𝑏 = 1 + 1 + 0 + 0 + 1 + 0 + 1 + 0 = 4 𝑚𝑜𝑑 2 = 0  

• Decode:  On input 𝑐  =  11001010|𝑏, output 
11001010 

• Error detection:   
– If a non-parity bit is flipped 

– If the parity bit is flipped 

• Can detect only one error.  Why? 
 



Error Correction for 1 Error: 
The Hamming Code 

• View codeword as a vector (𝑐1, 𝑐2, … , 𝑐7) 

• Some bits will be information bits, some bits 
will be parity-check bits. 

• Parity-check matrix H: 

 
0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 

 

 
2𝑘 − 1 codeword length 

𝑘 parity bits 



Property of the Hamming Code 

• For any codeword 𝑐 , 𝐻 ⋅ 𝑐 = 0. 

• Parity-check matrix 𝐻: 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
𝑐2
𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

= 0 0 0    

 



Property of the Hamming Code 

• To encode a message 𝑚 = 𝑚1, 𝑚2, 𝑚3, 𝑚4 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
𝑐2
𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

= 0 0 0    

 
Message bit positions 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
𝑐2

0
𝑐4

1
1
0

= 0 0 0    

 
Message bit positions 



Property of the Hamming Code 

• To encode a message 𝑚 = 𝑚1, 𝑚2, 𝑚3, 𝑚4 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
𝑐2
𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

= 0 0 0    

 
Parity bit positions 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
𝑐2

0
𝑐4

1
1
0

= 0 0 0    

 
Parity bit positions 

Put in a value in 𝑐4 so that 
0 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 0 ⋅ 0 +  1 ⋅ 𝑐4 +

1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0 
= c4 + 0 = 0 𝑚𝑜𝑑 2 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
𝑐2

0
0
1
1
0

= 0 0 0    

 
Parity bit positions 

Put in a value in 𝑐4 so that 
0 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 0 ⋅ 0 +  1 ⋅ 𝑐4 +

1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0 
= c4 + 0 = 0 𝑚𝑜𝑑 2 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
𝑐2

0
0
1
1
0

= 0 0 0    

 
Parity bit positions 

Put in a value in 𝑐2 so that 
0 ⋅ 𝑐1 + 1 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

0 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0 
= c2 + 1 = 0 𝑚𝑜𝑑 2 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
1
0
0
1
1
0

= 0 0 0    

 
Parity bit positions 

Put in a value in 𝑐2 so that 
0 ⋅ 𝑐1 + 1 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

0 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0 
= c2 + 1 = 0 𝑚𝑜𝑑 2 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

𝑐1
1
0
0
1
1
0

= 0 0 0    

 
Parity bit positions 

Put in a value in 𝑐1 so that 
1 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

1 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 0 
= c1 + 1 = 0 𝑚𝑜𝑑 2 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

1
1
0
0
1
1
0

= 0 0 0    

 

Parity bit positions 

Put in a value in 𝑐1 so that 
1 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

1 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 0 
= c1 + 1 = 0 𝑚𝑜𝑑 2 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

1
1
0
0
1
1
0

= 0 0 0    

 

Parity bit positions 

Codeword 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

1
1
0
1
1
1
0

= 0 0 0    

 

Parity bit positions 

Codeword 

Error! 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

1
1
0
1
1
1
0

= 1 0 0    

 

Parity bit positions 

Corrupted Codeword 



Property of the Hamming Code 

• To encode a message 𝑚 = 0, 1,1,0 

0 0 0
0 1 1
1 0 1

    
1 1 1
0 0 1
0 1 0

   
1
1
1

 ⋅  

1
1
0
1
1
1
0

= 1 0 0    

 

Parity bit positions 

Corrupted Codeword 


