2’s and 1’s Complement

Lecture 2 Exercise
9/2/15
2’s Complement

\(\ell = 8 \) bits of memory (one byte)
Can represent numbers from 0 \(\rightarrow \) 255 (00000000 \(\rightarrow \) 11111111)
Or can represent signed numbers from −128 \(\rightarrow \) +127
Example: To represent −10, compute \(2^\ell - 10 = 256 - 10 = 100000000 - 1010 = 11110110 \)

Represent 72 in binary:

Represent -35 in 2’s complement:

What is a quick way to tell whether a number is positive or negative?

Use 2’s complement to compute 72-35 by computing 72 + (-35):

What happens to the highest order carry?

1’s Complement

\(\ell = 8 \) bits of memory (one byte)
Can represent numbers from 0 \(\rightarrow \) 255 (00000000 \(\rightarrow \) 11111111)
Or can represent signed numbers from −127 \(\rightarrow \) +127 (there are 2 ways to represent 0—what are they?)
Example: To represent −10, compute 10 in binary: 1010. To compute −10, flip the bits: 11110101

Represent 72 in binary:

Represent -35 in 1’s complement:

What is a quick way to tell whether a number is positive or negative?

Use 1’s complement to compute 72-35 by computing 72 + (-35) (note there is an extra step that must be done during subtraction—what is it?):

Is an extra step during subtraction necessary when computing 35 + (-72)?
2’s and 1’s Complement

Lecture 2 Exercise

9/2/15

Discussion

• Which is easier—computing the 2’s complement or 1’s complement?
• Which is easier—subtraction using 2’s complement or 1’s complement?
• How can we use the 1’s complement to compute the 2’s complement?
• Which do you think should be the preferred choice?