Announcements

• Homework 8 up on course webpage. Due Monday, 11/23
Agenda

• Last time:
 – The Basic Bistable Element (6.1)
 – Latches (6.2)
 – Timing Considerations (6.3)

• This time:
 – Review of 6.2-6.3
 – Master-Slave Flip-Flops (6.4)
 – Edge-Triggered Flip-Flops (6.5)
 – Characteristic Equations (6.6)
Review--The SR Latch

\(Q^+, \overline{Q}^+ \) indicates the response of the latch at the \(Q, \overline{Q} \) output terminals as a consequence of applying the various inputs. \(Q^+ \) is called the next state of the latch.
Review--The Gated SR Latch

(a) Diagram of the gated SR latch with inputs S, R, and C, and outputs Q and \bar{Q}, along with an enable input C.

(b) Truth table for the gated SR latch:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

*Unpredictable behavior will result if S and R return to 0 simultaneously or C returns to 0 while S and R are 1.

(c) Different representations of the gated SR latch circuit.
Review--The Gated D Latch
Propagation Delays

- The propagation delay is the time it takes a change in an input signal to produce a change in an output signal.
- Propagation delay from low to high: t_{pLH}
- Propagation delay from high to low: t_{pHL}

In general, these may be different.
Timing Diagram

- Propagation delays from high-low, low-high assumed equal.
- When $S = R = 1$, both Q, \overline{Q} become 0.
- t_{15}, signals on S, R are simultaneously changed from 1 to 0.
 - Response of latch is unpredictable. Can be in 0-state, 1-state or metastable state.
 - Application of 1 on the set input terminal returns the latch to predictable.
Minimum Pulse Width

• Another specification stated by the manufacturers of latches is that of a minimum pulse width $t_w(min)$.

 – Minimum amount of time a signal must be applied in order to produce a desired result.

• Failure to satisfy the constraint may cause unintended change or have the latch enter its metastable state.
Setup and Hold Times

- Consider timing diagram for a gated D latch
- Q-output follows the input signal at D whenever the enable signal C = 1.
- When C = 0, changes are ignored.

- Consider times t_3, t_6, t_{11}, t_{14}.
 - C is returned to 0. Output latches onto its current state.
 - To guarantee latching action: constraint is placed on D signal. Must not change right before and after C goes from 1 to 0.

- Setup time: minimum time t_{su} that D signal must be held fixed before the latching action.
- Hold time: minimum time t_h that D signal must be held fixed after the latching action.
Unpredictable Response in a gated D latch

Figure 6.11 Illustration of an unpredictable response in a gated D latch.
Master-Slave Flip-Flops
(Pulse Triggered Flip-Flops)

• Aside from latches, two categories of flip-flops.
 – Master-slave flip-flops (pulse-triggered flip-flops)
 – Edge-triggered flip-flops

• Latches have immediate output response (known as transparency)

• May be undesirable:
 – May be necessary to sense the current state of a flip-flop while allowing new state information to be entered.
Master-Slave SR Flip-Flop

- Two sections, each capable of storing a binary symbol.
- First section is referred to as the master and the second section as the slave.
- Information is entered into the master on one edge or level of a control signal and is transferred to the slave on the next edge or level of the control signal.
- Each section is a latch.
Master-Slave SR Flip-Flop

- **C = 0:**
 - Master is disabled. Any changes to S,R ignored.
 - Slave is enabled. Is in the same state as the master.

- **C = 1:**
 - Slave is disabled (retains state of master)
 - Master is enabled, responds to inputs. Changes in state of master are not reflected in disabled slave.

- **C = 0:**
 - Master is disabled.
 - Slave is enabled and takes on new state of the master.

- **Important:** For short periods during rising and falling edges, both master and slave are disabled.
Master-Slave SR Flip-Flop

Slave only takes on state of the master at t_4.

Postponed output indicator: output change postponed until end of pulse.

If $S, R = 1$ when control signal goes from high to low we are in an unpredictable state. Can cause metastable state.

Pulse symbol indicates master enabled when $C = 1$ and state of master transferred to slave at the end of the pulse period.
Timing Diagram for Master-Slave SR flip-flop
Master-Slave JK Flip-Flop

• The output state of a master-slave SR flip-flop is undefined upon returning the control input to 0 when $S = R = 1$.
 – Necessary to avoid this condition.

• Master-slave JK flip-flop allows its two information input lines to be simultaneously 1.
 – Results in toggling the output of the flip flop.
• Assume in 1-state, $C = 0$, $J = K = 1$.
 – Due to feedback, the output of the J-gate is 0, output of K-gate is 1.
 – If clock is changed to $C = 1$ then master is reset.
• Assume in 0-state, $C = 0$, $J = K = 1$.
 – Due to feedback, the output of the J-gate is 1, output of K-gate is 0.
 – If clock is changed to $C = 1$ then master is set.
• 1 on J input line, 0 on K input line sets the flip-flop.
 – If in 1-state, unchanged b/c S,R set to 0.
 – If in 0-state, S set to 1, R set to 0.
• 0 on J input, 1 on K input line resets the flip-flop. Why?
Master-Slave JK Flip-Flop

Master-slave JK flip-flop

Clock \(C \)

\(J \)

\(K \)

\(S \)

\(C \)

\(R \)

\(Q_\text{M} \)

\(\overline{Q_\text{M}} \)

\(Q_\text{S} \)

\(\overline{Q_\text{S}} \)

\(Q \)

\(\overline{Q} \)

Inputs

\(J \)

\(K \)

\(C \)

Outputs

\(Q^+ \)

\(\overline{Q}^+ \)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 \overline{\overline{Q}}</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 \overline{1}</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 \overline{0}</td>
</tr>
<tr>
<td>1 1 1</td>
<td>\overline{\overline{Q}} 2</td>
</tr>
<tr>
<td>X X 0</td>
<td>0 \overline{\overline{Q}}</td>
</tr>
</tbody>
</table>

(a)

(b)

(c)
Timing Diagram for Master-Slave JK Flip-Flop
0’s and 1’s Catching

- The master is enabled during the entire period the control-signal is 1.
- If the slave latch is in its 1-state, then a logic-1 on K-input line causes the master-latch to reset. Slave becomes reset when control signal returns to 0.
- This is known as 0’s catching (2nd pulse).
 - Note: if a subsequent 1-signal on J input line and C is still 1, master does not become set again (due to feedback not changing).
- If slave latch is in 0-state, logic-1 on J input line while control signal is 1 causes the master latch to be set and slave will be set upon occurrence of the falling edge.
- This is known as 1’s catching (3rd pulse).
- In many applications, 0’s and 1’s catching behavior is undesirable. Normally recommended that the J and K input values should be held fixed during the entire interval the master is enabled.
- Any changes in J, K must occur while the control signal is 0.
0’s Catching

- Assume in 1-state ($Q = 1, \overline{Q} = 0$), $C = 1, J = 0, K = 0$
- K gets set to 1 briefly.
 - Master gets reset, Slave will become reset when Clock goes to 0.
- K goes to 0.
- J goes to 1. What happens?
- Nothing! Slave will still become reset when Clock goes to 0.
- Why?