Cryptography

Lecture 9

Announcements

- HW2 is due Monday, 2/26
- HW3 is up on Canvas and the Course webpage due Wednesday, 3/6

Agenda

- Last time:
 - PRF Class Exercise
 - Block Ciphers (K/L 3.5)
 - Modes of Operation (K/L 3.6)
- This time:
 - Introduction to MACs
 - Security Definition for MAC (K/L 4.2)
 - Constructing MAC from PRF (K/L 4.3)
 - Begin Discussing Domain Extension for MACs (K/L 4.4)
 - Class Exercise

Message Integrity

Authenticity/

Secrecy vs. Integrity

• Encryption vs. Message Authentication

$$S$$

$$K$$

$$(m,t)$$

$$t \in Mac_{K}(m)$$

$$Vrfy_{K}(m,t) = 0/1$$

C = (C1, C2) M $r \in \{0,1\}^n$ $C = (r, f(r) \oplus m)$ EVL any length 2n bitstring will decoypt (C_1, C_2) Rec will output Fu(c,) @ c2

Integrity: Flip the last message:

Sust flip last bit of Cz: XOR'ing w) On-1111

Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) such that:

- 1. The key-generation algorithm Gen takes as input the security parameter 1^n and outputs a key k with $|k| \ge n$.
- 2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t. $t \leftarrow Mac_k(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit b with b=1 meaning valid and b=0 meaning invalid. $b\coloneqq Vrfy_k(m,t)$.

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

Experiment $MACforge_{A,\Pi}(n)$

Adversary $A(1^n)$

Challenger

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

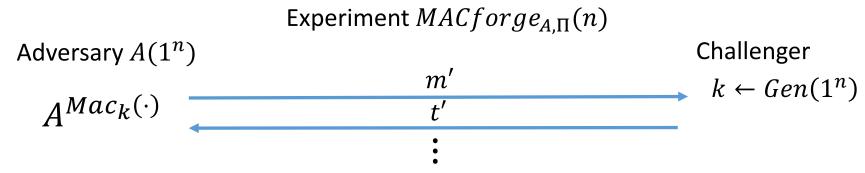
Experiment $MACforge_{A,\Pi}(n)$

Adversary $A(1^n)$

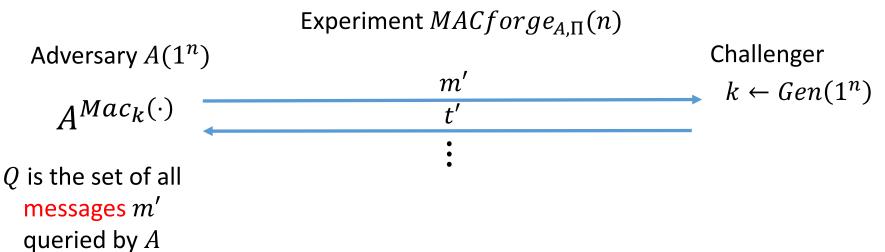
Challenger

 $k \leftarrow Gen(1^n)$

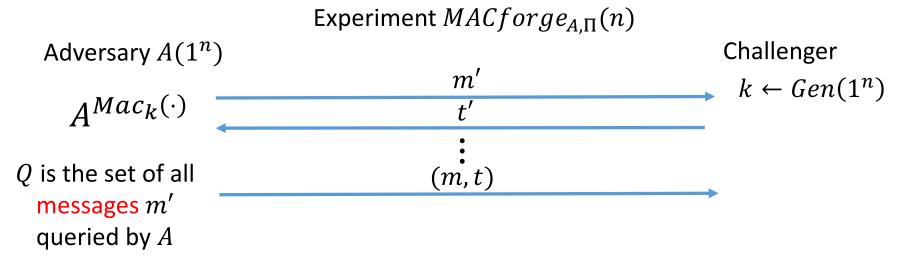
Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.



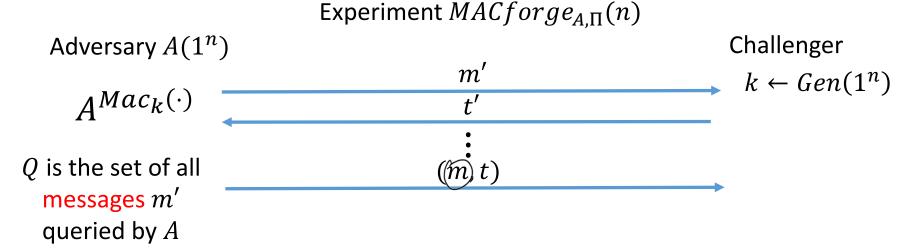
Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.



Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.



Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.



$$MACforge_{A,\Pi}(n)=1$$
 if both of the following hold:
1. $m \notin Q$
2. $Vrfy_k(m,t)=1$

Otherwise, $MACforge_{A,\Pi}(n) = 0$

Security of MACs

The message authentication experiment $MACforge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.

Security of MACs

1 Secure MAC"

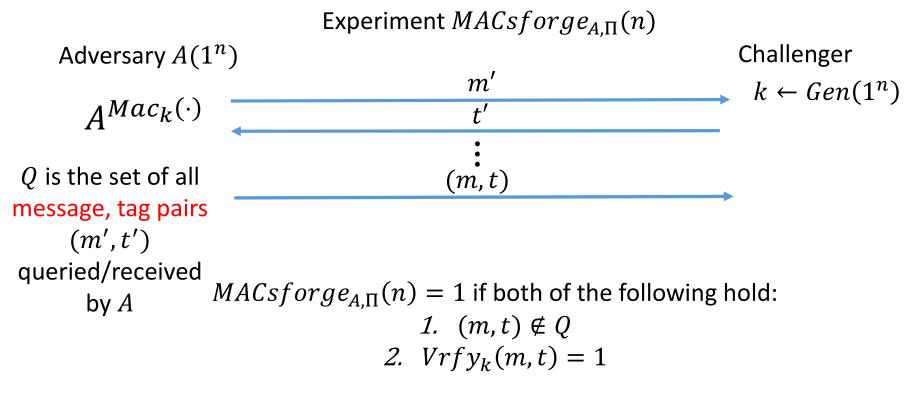
Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[MACforge_{A,\Pi}(n) = 1] \le neg(n)$$
.

"Strongly Secure"

Strong Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.



Otherwise, $MACsforge_{A,\Pi}(n) = 0$

Strong MACs

The strong message authentication experiment $MACsforge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $(m,t) \notin Q$. In that case, the output of the experiment is defined to be 1.

Strong MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is a strong MAC if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that: $\Pr[MACsforge_{A,\Pi}(n) = 1] \leq neg(n)$.

Constructing Secure Message Authentication Codes

$$K \in \{0,1\}^n$$
 $Mac_K(m) = F_K(m)$
 tag
 $Vrfy_K(m,t): Compute F_K(m) \stackrel{?}{=} t$
 $(f no, output 0)$

A Fixed-Length MAC

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

- Mac: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t \coloneqq F_k(m)$.
- Vrfy: on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output 1 if and only if $t = F_k(m)$.

Theorem: If F is a pseudorandom function, then the construction above is a secure fixed-length MAC for messages of length n.

Proof: Assume MAC is insecure { Contrapositive }

Pseudorandom Function

Definition: Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed function. We say that F is a pseudorandom function if for all ppt distinguishers D, there exists a negligible function negl such that:

$$\left| \Pr \left[D^{F_k(\cdot)}(1^n) = 1 \right] - \Pr \left[D^{f(\cdot)}(1^n) = 1 \right] \right| \leq negl(n).$$

where $k \leftarrow \{0,1\}^n$ is chosen uniformly at random and f is chosen uniformly at random from the set of all functions mapping n-bit strings to n-bit strings.

Security of MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

such that:
$$\Pr[MACforge_{A,\Pi}(n) = 1] \leq neg(n).$$

$$\Pr[MACforge_{A,\Pi}(n) = 1] \leq neg(n).$$

$$\Pr[MACforge_{A,\Pi}(n) = 1] \leq neg(n).$$

1. How does D respond to m' (a) Send m' to oracle
get back () (m') (b) return t = O(m') to A 2. Given (ma, tax) how to ?
decide an 0/1 output? If m & & Q AND O(ma) = to -> Output 1 o/w Output O Case 1: 0 = Fx $Pr\left(D^{F_{c}(\cdot)}(n)=1\right)=Pr\left(MACGorge_{A,T}(n)=1\right)\geq f(n)$ Case 2: 0=f

Pr (Df(-) (m) = 1]= 1

Diff in prob: $p'(n) = p(n) - \frac{1}{2}n$ Show it is non-negl.

IV

Let A be a ppt adversary trying to break the security of the construction. We construct a distinguisher D that uses A as a subroutine to break the security of the PRF.

Distinguisher *D*:

D gets oracle access to oracle O, which is either F_k , where F is pseudorandom or f which is truly random.

- 1. Instantiate $A^{Mac_k(\cdot)}(1^n)$.
- 2. When A queries its oracle with message m, output O(m).
- 3. Eventually, A outputs (m^*, t^*) where $m^*, t^* \in \{0,1\}^n$.
- 4. If $m^* \in Q$, output 0.
- 5. If $m^* \notin Q$, query $O(m^*)$ to obtain output z^* .
- 6. If $t^* = z^*$ output 1. Otherwise, output 0.

Consider the probability D outputs 1 in the case that O is truly random function f vs. O is a pseudorandom function F_k .

- When O is pseudorandom, D outputs 1 with probability $\Pr[MACforge_{A,\Pi}(n)=1]=\rho(n)$, where ρ is non-negligible.
- When O is random, D outputs 1 with probability at most $\frac{1}{2^n}$. Why?

D's distinguishing probability is:

$$\left|\frac{1}{2^n} - \rho(n)\right| = \rho(n) - \frac{1}{2^n}.$$

Since, $\frac{1}{2^n}$ is negligible and $\rho(n)$ is non-negligible, $\rho(n) - \frac{1}{2^n}$ is non-negligible.

This is a contradiction to the security of the PRF.

Domain Extension for MACs