Cryptography

Lecture 3

Announcements

- HW1 due Wednesday, 2/7 at beginning of class
- Discrete Math Readings/Quizzes due Wednesday, 1/31 @ 11:59pm

Agenda

- Last time:
 - Perfect Secrecy (K/L 2.1)
 - One time pad (OTP) (K/L 2.2)
- This time:
 - Limitations of perfect secrecy (K/L 2.3)
 - Shannon's Theorem (K/L 2.4)
 - The Computational Approach (K/L 3.1)

The One-Time Pad Scheme

- 1. Fix an integer $\ell > 0$. Then the message space M, key space K, and ciphertext space C are all equal to $\{0,1\}^{\ell}$.
- 2. The key-generation algorithm Gen works by choosing a string from $K = \{0,1\}^{\ell}$ according to the uniform distribution.
- 3. Encryption Enc works as follows: given a key $k \in \{0,1\}^{\ell}$, and a message $m \in \{0,1\}^{\ell}$, output $c \coloneqq k \oplus m$.
- 4. Decryption Dec works as follows: given a key $k \in \{0,1\}^{\ell}$, and a ciphertext $c \in \{0,1\}^{\ell}$, output $m \coloneqq k \oplus c$.

Security of OTP

Theorem: The one-time pad encryption scheme is perfectly secure.

$$K = \{0,13^{l} \quad M = \{0,13^{l} \}$$
Ben outputs random $K \nsubseteq K$
Enc $(K,m) = K @ M$
Dec $(K,c) = K @ C$

Perfect Indistinguishability

• Lemma: An encryption scheme (Gen, Enc, Dec) over a message space M is perfectly secret if and only if for every probability distribution over M, every $m_0, m_1 \in M$, and every ciphertext $c \in C$: $\Pr[C = c \mid M = m_0] = \Pr[C = c \mid M = m_1]$.

OTP is Perfectly secret Proof: fix an arbitrary dist over my fix mo, m, e m fix ce C Pr[C=c|M=mo] = Pr[K@M=c|M=mo] by det of Using Prob Pr(M=mo) = Pr(K@m.=c \ M=mo) Exents and equivalent = Pr(K=m.oc / M=m.) = Pr(K=m.oc). Pr(H=m.)

Pr(H=m.) - Pr(K=m.oc) Pr(H=m.) Everything the same for $Pr[C=c]M=m,]=\frac{1}{2R}$: Pr (C=c | N=mo)= Pr (C=c | M=m,)

Proof

Proof: Fix some distribution over M and fix an arbitrary $m \in M$ and $c \in C$. For one-time pad:

$$\Pr[C = c \mid M = m] = \Pr[M \bigoplus K = c \mid M = m]$$
$$= \Pr[m \bigoplus K = c] = \Pr[K = m \bigoplus c] = \frac{1}{2\ell}$$

Since this holds for all distributions and all m, we have that for every probability distribution over M, every $m_0, m_1 \in M$ and every $c \in C$

$$\Pr[C = c \mid M = m_0] = \frac{1}{2^{\ell}} = \Pr[C = c \mid M = m_1]$$

Drawbacks of OTP

- Key length is the same as the message length.
 - For every bit communicated over a public channel,
 a bit must be shared privately.
 - We will see this is not just a problem with the OTP scheme, but an inherent problem in perfectly secret encryption schemes.
- Key can only be used once.
 - You will see in the homework that this is also an inherent problem. $C_{\Lambda} = \angle \otimes M_{\delta}$

$$C_0 \oplus C_1 = m_0 \oplus m_1$$

Limitations of Perfect Secrecy

Theorem: Let (Gen, Enc, Dec) be a perfectly-secret encryption scheme over a message space M, and let K be the key space as determined by Gen. Then $|K| \ge |M|$.

Proof by Contradiction: Assume that an enc schene has policy [M]. Prove that the scheme is not perfectly secret.

Definition of Perfect Secrecy

• An encryption scheme (Gen, Enc, Dec) over a message space M is perfectly secret if for \forall every probability distribution over M, every message $m \in M$, and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$:

To show is NOT perfectly secred

A ist over \mathcal{M} (Hind: by uniform dist) \mathcal{M} \mathcal

Proof. Assume (Gen, Enc, Dec) with 12/2/m/ Considu the uniform dist over of Pick any CEC. Alg: Brute force search

my Dec(k, c) with every k & R. add resulting message to the set [M(c).] $\mathfrak{Ih}(c) := \{ m' \mid m' = \operatorname{Dec}(k,c) \text{ for some } k \in \mathbb{R} \}$ Claim: |M(c) < 19x (justify @ home) By Assumption: |M(c)| < |K| < |M| -> |M(c)| < |M). By logical argument there must be some ma e off but make m(c). fix the message max Pr (M=m2)= 1 = 1 = 0

Proof

Proof (by contradiction): We show that if |K| < |M| then the scheme cannot be perfectly secret.

- Assume |K| < |M|. Consider the uniform distribution over M and let $c \in C$.
- Let M(c) be the set of all possible messages which are possible decryptions of c.

$$M(c) := \{m' | m' = Dec_k(c) for some k \in K\}$$

Proof

$$M(c) := \{ m' | m' = Dec_k(c) for some k \in K \}$$

- $|M(c)| \le |K|$. Why?
- Since we assumed |K| < |M|, this means that there is some $m' \in M$ such that $m' \notin M(c)$.
- But then

$$\Pr[M = m' | C = c] = 0 \neq \Pr[M = m']$$

And so the scheme is not perfectly secret.

Shannon's Theorem

Let (Gen, Enc, Dec) be an encryption scheme with message space M, for which |M| = |K| = |C|. The scheme is perfectly secret if and only if:

- 1. Every key $k \in K$ is chosen with equal probability 1/|K| by algorithm Gen.
- 2. For every $m \in M$ and every $c \in C$, there exists a unique key $k \in K$ such that $Enc_k(m)$ outputs c.
- **Theorem only applies when |M| = |K| = |C|.

Example quiz question for Lecture 3 material

- Is the following scheme perfectly secret?
- Message space $M = \{0,1,...,n-1\}$. Key space $K = \{0,1,...,n-1\}$.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns m + k.
- $Dec_k(c)$ returns c k.

no modular reduction

Cannot apply Shannon's theorem.

Prove not perfectly secret. Choose

Consider uniform dist over
$$M$$
. $M=0$.

 $M=0$.

 $M=0$
 $M=0$

Example quiz question for Lecture 3 material

- Is the following scheme perfectly secret?
- Message space $M = \{0,1,...,n-1\}$. Key space $K = \{0,1,...,n-1\}$.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns $m + k \mod n$.
- $Dec_k(c)$ returns $c k \mod n$.

The Computational Approach

Two main relaxations:

- Security is only guaranteed against efficient adversaries that run for some feasible amount of time.
- 2. Adversaries can potentially succeed with some very small probability.