Cryptography

Lecture 23

Announcements

HW5 due on Wednesday, 4/24

Agenda

- Last time:
 - Cyclic groups
- This time:
 - More on Cyclic Groups
 - Hard problems (Discrete log, Diffie-Hellman Problems—CDH, DDH)
 - Elliptic Curve Groups

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$\langle g \rangle = \{g^0, g^1, ..., g^{m-1}\}$$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider Z^*_{13} :

2 is a generator of Z^*_{13} :

2 ⁰	1		
2 ¹	2		
2 ²	4		
2^3	8		
2 ⁴	16 → 3		
2 ⁵	6		
2 ⁶	12		
27	24 → 11		
28	22 → 9		
2 ⁹	18 → 5		
210	10		
2 ¹¹	20 → 7		
212	14 → 1		

3 is not a generator of Z^*_{13} :

3 ⁰	1			
3 ¹	3			
3 ²	9			
3^3	27 → 1			
3 ⁴	3			
3^5	9			
3 ⁶	27 → 1			
3 ⁷	3			
38	9			
3 ⁹	27 → 1			
310	3			
311	9			
3 ¹²	27 → 1			

ordu of 3 is 3

ardu of 2 is 10

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^i = 1$. Ex: Consider Z_{13}^* . The order of 2 is 12. The order of 3 is 3.

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{x \mod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^x = g^y$ iff $x \equiv y \mod i$.

Cyclic group of ordu q 20, ... 9-1) chall s x = Z q x _ (generator (6, 9, 9)

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i./Then i |m.

Proof:

- We know by the generalized theorem of last class that $g^m = 1 = g^0$.
- By Proposition 2, we have that $0 \equiv m \mod i$
- By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Theorem: If p is prime then Z^*_p is a cyclic group of order p-1. Goal: Construct order p-1.

Prime-Order Cyclic Groups

Consider Z^*_{p} , where p is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z^*_p is a cyclic group of order p-1=2q.

perfect squares

The subgroup of quadratic residues in Z^*_p is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^*_{11} .

Note that 11 is a strong prime, since $11 = 2 \cdot 5 + 1$. g = 2 is a generator of Z^*_{11} :

20	1
2 ¹	2
2 ²	4
2^3	8
24	16 → 5
2 ⁵	10
2 ⁶	20 → 9
27	18 → 7
28	14 → 3
2 ⁹	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^*_{\ p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2} = q$.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers mod p-2 gives an even number mod p-1, since for prime p>3, p-1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Discrete Logarithm Problem

The discrete-log experiment $DLog_{A,G}(n)$

- 1. Run $G(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n) and g is a generator of G.
- 2. Choose a uniform $(h \in G)$
- 3. A is given G, q, g, h and outputs $x \in Z_q$
- 4. The output of the experiment is defined to be 1 if $g^x = h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to ${\bf G}$ if for all ppt algorithms ${\bf A}$ there exists a negligible function neg such that

$$\Pr[DLog_{A,\mathbf{G}}(n)=1] \leq neg(n)$$
.

The Diffie-Hellman Problems

Conputational roblem $\begin{array}{ccc}
z = g^{X_i \cdot X_2} & \xrightarrow{z} & h_i = g^{X_i}, \\
h_z = g^{X_i}
\end{array}$ The CDH Problem Given (G, q, g) and uniform $h_1 = g \xrightarrow{x_1}, h_2 = g \xrightarrow{x_2},$ compute $g^{x_1 \cdot x_2}$. $\text{The } g(h_1) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad \text{The } g(h_2) = \chi_1 \qquad \text{The } g(h_2) = \chi_2 \qquad$ The CPH Assumption -> The Dlog assumption

If you can break -> You can break CDH

Dlog

Decisional

The DDH Problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

$$|\Pr[A(G,q,g,g^{x},g^{y},g^{z})=1] - \Pr[A(G,q,g,g^{x},g^{y},g^{xy})=1]| \leq neg(n).$$

$$|\Pr[A(G,q,g,g^{x},g^{y},g^{xy})=1]| \leq neg(n).$$

for any non-prime order The DDH problem is not hard in Zy Legendre Symbol a poly-time algorithm to check wheth ZEZp is a quadratic residue quadratic residues au elements g a is ever. Dlogg(2) is even or odd $\left(3^{x}, 3^{y}, 3^{x-y}\right)$ JS $\left(9^{\times},9^{\circ},9^{\circ}\right)$ 1 1 0 X 1 0 1 X 2 Fill in details of distinguishing attack

Relative Hardness of the Assumptions

Breaking DLog → Breaking CDH → Breaking DDH

DDH Assumption → CDH Assumption → DLog Assumption

(Finite) Fields:

- A (finite) set of elements that can be viewed as a group with respect to two operations (denoted by addition and multiplication).
- The identity element for addition (0) is not required to have a multiplicative inverse.
- Example: Z_p, for prime p: {0, ..., p-1}
 - Z_p is a group with respect to addition mod p
 - Z*_p (taking out 0) is a group with respect to multiplication mod p
- We can now consider *polynomials* over Z_p as polynomials consist of only multiplication and addition.

- Z_p is a finite field for prime p.
- Let $p \ge 5$ be a prime
- Consider equation E in variables x, y of the form:

$$y^2 \coloneqq x^3 + Ax + B \mod p$$

Where A, B are constants such that $4A^3 + 27B^2 \neq 0$.

(this ensures that $x^3 + Ax + B \mod p$ has no repeated roots).

Let $E(Z_p)$ denote the set of pairs $(x, y) \in Z_p \times Z_p$ satisfying the above equation as well as a special value O.

$$E\big(Z_p\big)\coloneqq\big\{(x,y)\big|x,y\in Z_p\ and\ y^2=x^3+Ax+B\ mod\ p\big\}\cup\{0\}$$

The elements $E(Z_p)$ are called the points on the Elliptic Curve E and O is called the point at infinity.

Example:

Quadratic Residues over \mathbb{Z}_7 .

$$0^2 = 0$$
, $1^2 = 1$, $2^2 = 4$, $3^2 = 9 = 2$, $4^2 = 16 = 2$, $5^2 = 25 = 4$, $6^2 = 36 = 1$.

$$f(x) := x^3 + 3x + 3$$
 and curve $E: y^2 = f(x) \mod 7$.

- Each value of x for which f(x) is a non-zero quadratic residue mod 7 yields 2 points on the curve
- Values of x for which f(x) is a non-quadratic residue are not on the curve.
- Values of x for which $f(x) \equiv 0 \bmod 7$ give one point on the curve.

$f(0) \equiv 3 \bmod 7$	a quadratic non-residue mod 7
$f(1) \equiv 0 \bmod 7$	so we obtain the point $(1,0) \in E(Z_7)$
$f(2) \equiv 3 \bmod 7$	a quadratic non-residue mod 7
$f(3) \equiv 4 \bmod 7$	a quadratic residue with roots 2,5. so we obtain the points $(3,2)$, $(3,5) \in E(Z_7)$
$f(4) \equiv 2 \bmod 7$	a quadratic residue with roots 3,4. so we obtain the points $(4,3)$, $(4,4) \in E(Z_7)$
$f(5) \equiv 3 \bmod 7$	a quadratic non-residue mod 7
$f(6) \equiv 6 \bmod 7$	a quadratic non-residue mod 7

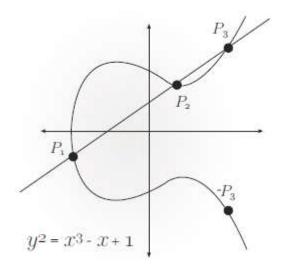


FIGURE 8.2: An elliptic curve over the reals.

Point at infinity: O sits at the top of the y-axis and lies on every vertical line.

Every line intersecting $E(Z_p)$ in 2 points, intersects it in exactly 3 points:

- 1. A point *P* is counted 2 times if line is tangent to the curve at *P*.
 - 2. The point at infinity is also counted when the line is vertical.

Addition over Elliptic Curves

Binary operation "addition" denoted by + on points of $E(Z_p)$.

- The point O is defined to be an additive identity for all $P \in E(Z_p)$ we define P + O = O + P = P.
- For 2 points $P_1, P_2 \neq 0$ on E, we evaluate their sum $P_1 + P_2$ by drawing the line through P_1, P_2 (If $P_1 = P_2$, draw the line tangent to the curve at P_1) and finding the 3rd point of intersection P_3 of this line with $E(Z_p)$.
- The 3rd point may be $P_3 = 0$ if the line is vertical.
- If $P_3 = (x, y) \neq 0$ then we define $P_1 + P_2 = (x, -y)$.
- If $P_3 = O$ then we define $P_1 + P_2 = O$.

Additive Inverse over Elliptic Curves

- If $P=(x,y)\neq 0$ is a point of $E(Z_p)$ then -P=(x,-y) which is clearly also a point on $E(Z_p)$.
- The line through (x, y), (x, -y) is vertical and so addition implies that P + (-P) = 0.
- Additionally, -O = O.

Groups over Elliptic Curves

Proposition: Let $p \ge 5$ be prime and let E be the elliptic curve given by $y^2 = x^3 + Ax + B \mod p$ where $4A^3 + 27B^2 \ne 0 \mod p$.

Let $P_1, P_2 \neq 0$ be points on E with $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$.

1. If
$$x_1 \neq x_2$$
 then $P_1 + P_2 = (x_3, y_3)$ with $x_3 = [m^2 - x_1 - x_2 \mod p], y_3 = [m - (x_1 - x_3) - y_1 \mod p]$ Where $m = \left[\frac{y_2 - y_1}{x_2 - x_1} \mod p\right]$.

- 2. If $x_1 = x_2$ but $y_1 \neq y_2$ then $P_1 = -P_2$ and so $P_1 + P_2 = 0$.
- 3. If $P_1 = P_2$ and $y_1 = 0$ then $P_1 + P_2 = 2P_1 = 0$.
- 4. If $P_1 = P_2$ and $y_1 \neq 0$ then $P_1 + P_2 = 2P_1 = (x_3, y_3)$ with $x_3 = [m^2 2x_1 \mod p], y_3 = [m (x_1 x_3) y_1 \mod p]$

Where
$$m = \left[\frac{3x_1^2 + A}{2y_1} \mod p\right]$$
.

The set $E(Z_p)$ along with the addition rule form an abelian group. The elliptic curve group of E.

^{**}Difficult property to verify is associativity. Can check through tedious calculation.

DDH over Elliptic Curves

DDH: Distinguish (aP, bP, abP) from (aP, bP, cP).

Size of Elliptic Curve Groups?

How large are EC groups mod p?

Heuristic: $y^2 = f(x)$ has 2 solutions whenever f(x) is a quadratic residue and 1 solution when f(x) = 0.

Since half the elements of Z_p^* are quadratic residues, expect $\frac{2(p-1)}{2}+1=p$ points on curve. Including O, this gives p+1 points.

Theorem (Hasse bound): Let p be prime, and let E be an elliptic curve over \mathbb{Z}_p . Then

$$p + 1 - 2\sqrt{p} \le |E(Z_p)| \le p + 1 + 2\sqrt{p}$$
.

Public Key Cryptography

Key Agreement

The key-exchange experiment $KE^{eav}_{A,\Pi}(n)$:

- 1. Two parties holding 1^n execute protocol Π . This results in a transcript trans containing all the messages sent by the parties, and a key k output by each of the parties.
- 2. A uniform bit $b \in \{0,1\}$ is chosen. If b = 0 set $\hat{k} := k$, and if b = 1 then choose $\hat{k} \in \{0,1\}^n$ uniformly at random.
- 3. A is given trans and \hat{k} , and outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$\Pr\left[KE^{eav}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + neg(n).$$