Cryptography

Lecture 16



Announcements

e HW4 due on 4/10



Agenda

* Finish Birthday bound + CRHF
* New Unit: Number Theory!



Preliminaries

* How much security can we hope for from a
CRHF that outputs ¢ bits?

* Discuss the “birthday bound”

— No matter what function is used, collisions can be

found with high probability after makmgi t/2 \
queries.
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Weaker Notions of Security

* Second preimage or target collision resistance:
Given s and a uniform x it is infeasible for a
ppt adversary to find x" # x such that
H°(x") = H°(x).

* Preimage resistance: Given s and uniform y it

is infeasible for a ppt adversary to find a value
x such that H°(x) = y.



Hash Functions From Block Ciphers

* Hash functions are generally constructed in
two steps:
— First, a compression function (fixed-length hash &)
function) h is designed h: 70(@9" > 30(\]“
— Next, some mechanism (e.g. Merkle-Damgard) is \/

used to extend h so as to handle arbitrary input

K |
lengths P{wdm Y,

* We will focus on the first step



Hash Functions From Block Ciphers

* Davies-Meyer construction:
 Fis ablock-cipher will n-bit key and £-bit block length.
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FIGURE 6.10: The Davies-Meyer construction.

* Above forms a compression function from n + £ bits ton
bits. 8%
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Security Analysis

 We do not know how to prove collision-
resistance of the compression function based
on the assumption that F is a strong PRP.

* Requires stronger assumption that F behaves
like an ideal cipher.

— Like a truly random permutation, except can query
oracle on different keys.

— Each key k € {0, 1} specifies an independent,
uniform permutation F(k,-) on £-bit strings.



Security Analysis

—

* Theorem: If F is modeled as anﬁzd;ﬂ cipher,)
then the Davies-Meyer construction yields a
collision-resistant compression function.
Concretely, any attacker making g <

2¢/2 queries to its ideal-cipher oracles finds a
collision with probability at most
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MD5

128-bit output length.

Designed in 1991, and for several years was believed to be collision-
resistant. Over a period of several years, various weaknesses began
to be found in MD5 but

these did not appear to lead to any easy way to find collisions.

In 2004 a team of Chinese cryptanalysts presented a new method
for finding

collisions in MD5 and were able to demonstrate an explicit collision!

Since then, the attack has been improved—collisions can be found
in under a minute on a desktop PC—and extended so that even
“controlled collisions” (e.g., two postscript files generating arbitrary
viewable content) can be found.

Due to these attacks, MD5 should no longer be used today for any
application requiring cryptographic security.



SHA-0, SHA-1, SHA-2

The Secure Hash Algorithm (SHA) refers to a series of cryptographlc
hash functions standardized by NIST. DK

SHA-1, was introduced in 1995. This algorithm has a 160-bit output, L
length, and supplanted a predecessor called SHA-O'which was ol
withdrawn due to unspecified flaws discovered in that algorithm.

Theoretical analysis over the past few years indicates that collisions
in SHA-1 can be found using significantly fewer than the 280 hash
function evaluations that would be necessary using a birthday

attack. o
Recently an explicit collision has been found. " At havhe

It is therefore recommended to migrate to SHA-2, which does not
currently appear to have the same weaknesses.

SHA-2 comprises two related functions: SHA-256 and SHA-512, with
256- and 512-bit output lengths, respectively.




SHA-0, SHA-1, SHA-2

* All hash functions in the SHA family are
constructed using the same basic design:
— A compression function is first defined using the

Davies-Meyer construction as applied to some block
cipher

— Extended to support arbitrary length inputs using the
Merkle-Damg®ard transform.
* The block cipher in each case was designed
specifically for building the compression function.

— Block ciphers SHACAL-1 (for SHA-1) and SHACAL-2 (for
SHA-2). Have large block lengths (160 and 256 bits
respectively) and 512-bit key lengths.



SHA-3 (Keccak)

NIST announced in late 2007 a public competition to design
a new cryptographic hash function to be called SHA-3.

Submitted algorithms were required to support both 256-
and 512-bit output lengths.

51 first-round candidates were narrowed down to 14 in
December, 2008, and these were further reduced to five
finalists in 2010. The remaining candidates were subject to
intense scrutiny by the cryptographic community over the
next two years.

In October, 2012, NIST announced the selection of Keccak
as the winner of the competition.

This algorithm is currently undergoing standardization as
the next-generation replacement for SHA-2.



SHA-3 (Keccak)

Keccak is unusual in several respects.
— One of the reasons Keccak was chosen is because its structure is very
different from that of SHA-1 and SHA-2.

It is based on an unkeyed permutation f with a large block length
of 1600 bits; this is radically different from, e.g., the Davies-Meyer
construction which relies on a keyed permutation.

Keccak does not use the Merkle-Damgard transform to handle
arbitrary input lengths. Instead, it uses a newer approach called the
sponge construction.

Keccak—and the more generally—can be
analyzed in the random-permutation model

— Here partles have access to an oracle for a random permutation
f: {0,1} - {0,1} (and possibly its inverse).

— This is weaker than the ideal-cipher model.




Number Theory



(I\/Iodular Arithmetic
@%@:@
a P %

We say that two integers a, b are congruent

modulo p denoted by
a=bmodp a “bmod P
If S %
p | (a—b) 1@] [s-3)
(i.e. p divides (a — b)). 3

Definition of modulo:



Modular Arithmetic

Examples: A

2
28
41

| of the following are true
—  _\

= 15 mod 13
= 15mod 13
= 15mod 13

—11|= 15 mod 13

s (s ()

v Y



Modular Arithmetic

Operation: addition mod p
Regular addition, take modulo p.

Example: 8 + 10 mod 13 = 18 mod 13 =
5 mod 13.
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Properties of Addition mod p

Consider the set Z,, of integers {0,1, ..., p — 1} and the operation
addition mod p.

* Closure: Adding two numbers in Z,, and taking mod p yields a
number in Z,.

 |dentitiy: Foreverya € Z,, |0 + a]lmod p = a mod p.

* Inverse: Foreverya € Z,, there exists a b € Z,, suchthata + b =
0 mod p.
— b is simply the negation of a (b = —a).

— Note that using the property of inverse, we can do subtraction. We
define ¢ — d mod p to be equivalent to ¢ + (—d)mod p.

* Associativity: Foreverya,b,c €Z,:(a+b)+c=a+ (b +
c)mod p.

Z, is a group with respect to addition!



Definition of a Group

2 o %0{.-,?\3
A group is a setfé

long with a binary operation o for which

the following conditions hold:

Closure: Forallg,h € G,g°h € G.

ldentity: There exists an identity e € G such that forall g €
G,eocg=g=goe.

Inverse: Forall g € G there exists an element h € G such
thatgoh =e = ho g. Such an his called an inverse of g.
Associativity: Forall g;,95,93 € G,(g1°92)° g3 = g1 ©
(g2 ° g3)-

When G has a finite number of elements, we say G is finite
and let |G| denote the order of the group.

2 of Rlumudt ) Z?) - ¥



Abelian Grou
Commo) ATV

A group G with operation o is abelian if the
following holds:

 Commutativity: Forallg,h € G,goh =hog.
+ Wtuo(p
We will always deal with finite, abelian groups.

-—_—




Other groups over the integers

 We will be interested mainly in multiplicative
groups over the integers, since there are
computational problems believed to be hard
over such groups.

— Such hard problems are the basis of number-
theoretic cryptography.

* Group operation is multiplication mod p,
instead of addition mod p.



Multiplication mod p

Example:
3:-8mod 13 = 24 mod 13 = 11 mod 13.



Multiplicative Groups

Is Z,, a group with respect to multiplication mod
p?

* Closure—YES

* |dentity—YES (1 instead of 0)

* Associativity—YES

* |Inverse—NO

— 0 has no inverse since there is no integer a such
that 0 - a = 1 mod p.



Multiplicative Group

For p prime, define Z;, = {1, ..., p — 1} with operation
multiplication mod p.

We will see that Z is indeed a multiplicative group!

To prove that Z;; is a multiplicative group, it is sufficient to
prove that every element has a multiplicative inverse
(since we have already argued that all other properties of
a group are satisfied).

This is highly non-trivial, we will see how to prove it using
the Euclidean Algorithm.



Inefficient method of finding inverses
mod p

Example: Multiplicative inverse of 9 mod 11.
9-1=9mod 11
-2=18 =7 mod 11
-3 =27 =5mod 11
-4 =36 =3 mod 11
-5=45=1mod 11

O© O O O

What is the time complexity?

Brute force search. In the worst case must try all 10 numbersin Z* 4 to find
the inverse.

This is exponential time! Why? Inputs to the algorithm are (9,11). The
length of the input is the length of the binary representation of (9,11). This
means that input size is approx. log, 11 while the runtime is approx.
2108211 = 11. The runtime is exponential in the input length.

Fortunately, there is an efficient algorithm for computing inverses.



Euclidean Algorithm

Theorem: Let a,p be positive integers. Then
there exist integers X, Y such that Xa + Yp =

ogcd(a,p).

Given a, p, the Euclidean algorithm can be used
to compute gcd(a, p) in polynomial time. The
extended Euclidean algorithm can be used to
compute X, Y in polynomial time.






Proving Z, is a multiplicative group

In the following we prove that every elementin Z* hasa

. : . . P
multiplicative inverse when p is prime. This is sufficient to prove that
Z, is a multiplicative group.

Proof. Leta € Z;. Then gcd(a,p) = 1, since p is prime.

By the Euclidean Algorithm, we can find integers X,Y such that aX +
pY = gcd(a,p) = 1.

Rearranging terms, we get that pY = (aX — 1) andsop | (aX — 1).
By definition of modulo, this implies that aX = 1 mod p.

By definition of inverse, this implies that X is the multiplicative inverse
of a.

Note: By above, the extended Euclidean algorithm gives us a way to
compute the multiplicative inverse in polynomial time.



Extended Euclidean Algorithm

Example

Find: X,Y suchthat 9X + 23Y = gcd(9,23) = 1.
23=2-945
9=1-5+4
5=1-4+1
4=4-14+0
1=5—-1-4

1=5-1:-(9—-1:5)
1=(23-2-99-(9-(23-2-9))
1=2-23-5-9
—5 = 18 mod 23 is the multiplicative inverse of 9 mod 23.






Time Complexity of Euclidean
Algorithm

When finding gcd(a, b), the “b” value gets
halved every two rounds.

Why?

Time complexity: 2log(b).
This is polynomial in the length of the input.
Why?



Getting Back to Z,,

Group Z;; = {1,...,p — 1} operation:
multiplication modulo p.

Order of a finite group is the number of
elements in the group.

Orderof Z, isp — 1.



