
Introduction
to Cryptocurrencies

a tutorial

Stefan Dziembowski
University of Warsaw

ACM CCS’15, Denver, Colorado, Oct 15 2015

Based on slides from:

With some added and
removed material

Announcements

• Midterm Upcoming on 3/13
– Review sheet and practice exam posted on

course webpage/ an a
– Solutions and Cheat Sheet posted soon on

Canvas

Outline
1. Introduction to Bitcoin
2. Bitcoin mining pools
3. Security of Bitcoin
4. Smart contracts
5. Other cryptocurrencies
6. Conclusion

An extended abstract of this tutorial
(including the references) is available at:
www.crypto.edu.pl/Dziembowski/talks/
bitcointutorial.pdf.
These slides are available at
www.crypto.edu.pl/Dziembowski/talks.

Part I
Introduction to Bitcoin

Main design principles

Main problem with the digital money

Double spending…

16fab13fc6890

16fab13fc6890

Bits are easier to copy than paper!

Bitcoin idea (simplified):

The users emulate a public trusted bulletin-board
containing a list of transactions.
A transaction is of a form:

This prevents double spending.

“User P1 transfers a coin #16fab13fc6890 to user P2”

16fab13fc6890

you’ve
already

spent this
coin!

What needs to be discussed

1. How is the trusted bulletin-board
maintained?

2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the

transactions?

The Merkle-Damgard Transform
 c c ain

Z.u = fl'-

FIGURE 5.1: Th, Mierkle..Damga,rd tran form.

r em t reac c n en n t e c rrect ina
ic ixe t e entire history

ir t attempt a rit te

Problem

How to define “majority” in
a situation where

everybody can join the network?

The Bitcoin solution

Define the “majority” as
the majority of the computing power

Now creating multiple identities does not help!

How is this enfor ed?

Main idea:

• use Proofs of Work
• incentivize honest users to constantly participate

in the process

The honest users can use their idle CPU cycles.

Nowadays: often done on dedicated hardware.

Proofs of work

Introduced by Dwork and Naor [Crypto 1992] as a
countermeasure against spam.

Basic idea:
Force users to do some computational work:

solve a moderately difficult “puzzle”
(checking correctness of the solution has to be fast)

A simple hash-based PoW

VerifierProver

random x

finds s such that
H(s,x) starts with n zeros (in binary)

s

salt “hardness parameter

checks if
H(s,x) starts
with n zeros

takes time 2n ⋅ TIME(H) takes time TIME(H)

H -- a hash function whose
computation takes time TIME(H)

Main idea
The users participating in the scheme are called the
“miners”.

They maintain a chain of blocks:

block0 block1 block2 block3

transactions
from period

1

transactions
from period

2

transactions
from period

3

the “genesis block” created by Satoshi on 03/Jan/2009

≈ 10 min.

block size < 1MB,
which translates

to max
7 trans./sec.

How to post on the board
Just broadcast (over the internet) your transaction to
the miners.

And hope they will add it to the next
block.

Important:
They never add an invalid
transaction (e.g. double spending)

transaction T

the miners are incentivized
to do it.

a chain with an invalid
transaction is itself not valid, so

no rational miner would do it.

Main principles

1. It is computationally hard to extend
the chain.

2. Once a miner finds an extension he
broadcasts it to everybody.

3. The users will always accept “the
longest chain” as the valid one.

the system
incentivizes
them to do it

How are the PoWs used?

Main idea: to extend the chain one needs to find salt such
that
H(salt, H(blocki),transactions) starts with some number n

of zeros

block0 block1 block2 block3

H – hash function

H

“hardness parameter”

H H

salt salt salt

transactions
from period

1

transactions
from period

2

transactions
from period

3

more concretely in Bitcoin: H is SHA256.

“Hashrate” = number of hashes
computed per second

Sep 17 2013 : 990,986 GH/s
Sep 17 2014 : 280,257,530 GH/s
Sep 17 2015 : 385,067,688 GH/s

Note:

≈ 258 hash / second

total hashrate over the last 2 years:

What if there is a “fork”?

blocki

blocki+1

blocki+2 block’1+2

blocki+3

blocki+4

block’1+3

this chain is valid

fork

For a moment let’s say: the “longest” chain
counts.

Does it make sense to “work” on a
shorter chain?

No! blocki+1

blocki+2 block’i+2

blocki+3

blocki+4

block’i+3

Because everybody else is working on
extending the longest chain.
Recall: we assumed that the majority
follows the protocol.

How are the miners incentivized to
participate in this game?

Short answer: they are paid (in Bitcoins) for this.
We will discuss it in detail later…

An important feature
Suppose everybody behaves according to the protocol

then:
every miner 𝐏𝐏𝐢𝐢 whose computing power is an 𝜶𝜶𝒊𝒊-fraction of the

total computing power mines an 𝜶𝜶𝒊𝒊-fraction of the blocks.

Intuitively this is because:
𝐏𝐏𝐢𝐢’s chances of winning are proportional to

the number of times 𝐏𝐏𝐢𝐢 can compute 𝐇𝐇 in a given time frame.

fraction of computing power fraction of revenue

≈

Freshness of the genesis block
I didn’t know the genesis block before
Bitcoin was launched (Jan 3, 2009)

Here is a heuristic “proof”:
Block0 contained a hash of a title
from a front page of the London
Times on Jan 3, 2009

A recent paper that shows how to generate the genesis block
in a distributed way: [Andrychowicz, D., CRYPTO’15].

What needs to be discussed

1. How is the trusted bulletin-board maintained?
2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the transactions?

User identification

We use the digital signature schemes.

secret key sk1

public key pk1

I am pk1

The users are identified by their public keys.

Digital signature schemes
A digital signature scheme consists of algorithms Gen, Sign
and Vrfy, where:

Gen (secret key sk, public key pk)

Sign signature σ(sk, message M)

Vrfy yes/no(pk, M, σ)

input: output:

Correctness:
for every (sk,pk) := Gen() and every M we have

Vrfy(pk,M,Sign(sk,M)) = yes
Security:

“without knowing sk it is infeasible to compute σ such that
Vrfy(pk,M,σ) = yes”

What needs to be discussed

1. How is the trusted bulletin-board maintained?
2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the transactions?

Where does the money come from?

A miner who finds a new block gets a “reward” in BTC:

• for the first 210,000 blocks: 50 BTC
• for the next 210,000 blocks: 25 BTC
• for the next 210,000 blocks: 12.5 BTC,
and so on…

Note: 210,000 ⋅ (50 + 25 + 12.5 +) → 21,000,000

≈ 4 years

current reward

More details
Each block contains a transaction that transfers the
reward to the miner.

Advantages:
1. It provides incentives to be a miner.
2. It also makes the miners interested in broadcasting

new block asap.

this view was challenged in a recent paper:
Ittay Eyal, Emin Gun Sirer
Majority is not Enough: Bitcoin Mining is
Vulnerable
(we will discuss it later)

What needs to be discussed

1. How is the trusted bulletin-board maintained?
2. How are the users identified?
3. Where does the money come from?
4. What is the syntax of the transactions?

Bitcoin’s money mechanics
Bitcoin is “transaction based”.
Technically: there is no notion of a “coin” in Bitcoin.

25 BTC
created by 𝐏𝐏𝟏𝟏

10 BTC sent to 𝐏𝐏𝟑𝟑25 BTC sent to 𝐏𝐏𝟐𝟐

10 BTC sent to 𝐏𝐏𝟒𝟒

15 BTC sent to 𝐏𝐏𝟓𝟓

25 BTC
created by 𝐏𝐏𝟔𝟔

15 BTC from 𝐏𝐏𝟓𝟓
plus

25 BTC from 𝐏𝐏𝟔𝟔
sent to 𝐏𝐏𝟗𝟗

10 BTC sent to 𝐏𝐏𝟖𝟖

10 BTC sent to 𝐏𝐏𝟕𝟕 𝐏𝐏𝟕𝟕 has 10 BTC
𝐏𝐏𝟖𝟖 has 10 BTC

𝐏𝐏𝟗𝟗 has 40 BTC

time

Transaction syntax – simplified view

T1 = (User P1 creates 25 BTC)

T2 = (User P1 sends 25 BTC from T1 to P2 signature of P1 on [T2])

T3 = (User P2 sends 25 BTC from T2 to P3 signature of P2 on [T3])

25
BTC

25 BTC
25 BTC

in the “mining process”

P1

P2

P3

[T2]

[T3]

“value of T2“

We say that T3
redeems T2

How to “divide money”?

Multi-output
transactions:

T2 =
(User P1 sends 10 BTC from T1 to user P2 ,

User P1 sends 7 BTC from T1 to user P3 ,
User P1 sends 8 BTC from T1 to user P4

signature of P1 on
[T2])

7 BTC
[T2]

P1

P2

P3

P4

Multiple inputs

all signatures need to be valid!

8
BTC

T4 =
(User P1 sends 10 BTC from T1 to user P4 ,

User P2 sends 7 BTC from T2 to user P4 ,
User P3 sends 8 BTC from T3 to user P4

signature of P1 on [T4],
signature of P2 on [T4],
signature of P3 on [T4])

[T4] P4

P3P1 P2

Time-locks

It is also possible to specify time t when a transaction
becomes valid.

T2 = (User P1 sends 25 BTC from T1 to P2
if time t has passed) signature of P1 on [T2])

[T2]

measured in:
• real time, or
• blocks.

