Cryptography

Lecture 10

Announcements

* HW3 due on Wednesday, 3/6

Agenda

e |Last time:
— MACs (K/L 4.1, 4.2, 4.3)
e This time:

— Domain Extension for MACs (K/L 4.4) and Class
Exercise solutions

— CCA security (K/L 3.7)
— Authenticated Encryption (K/L 4.5)

Message Authentication Codes

Definition: A message authentication code (MAC) consists of
three probabilistic polynomial-time algorithms

(Gen,Mac,Vrfy) such that:

1. The key-generation algorithm Gen takes as input the
security parameter 1™ and outputs a key k with |k| = n.

2. The tag-generation algorithm Mac takes as input a key k
and a message m € {0,1}*, and outputs a tag t.
t <« Mac;, (m).

3. The deterministic verification algorithm Vrfy takes as
input a key k, a message m, and a tag t. It outputs a bit b
with b = 1 meaning valid and b = 0 meaning invalid.
b:=Vrfy,(m,t).

It is required that for every n, every key k output by Gen(1™),

and every m € {0,1}*, it holds that Vrfy,(m, Mac,(m)) = 1.

Unforgeability for MACs

Consider a message authentication code Il = (Gen, Mac,Vrfy), any
adversary A, and any value n for the security parameter.

Experiment MACforge, n(n)

Adversary A(1") Challenger
m’ k « Gen(1™
AMaCk(°) tr ()
Q is the set of all (m, t)
messages m’
queried by A

MACforge,n(n) = 1 if both of the following hold:

1. mé&Q
2. Vrfyi,(m,t) =1

Otherwise, MACforge,n(n) = 0

Security of MACs

The message authentication experiment
MACforge,n(n):

1. Akey k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle
access to Macy (). The adversary eventually

outputs (m, t). Let Q denote the set of all
gueries that A asked its oracle.

3. A succeeds if and only if (1) Vrfy,(m,t) =1

and (2) m &€ Q. In that case, the output of the
experiment is defined to be 1.

Security of MACs

Definition: A message authentication code

[I = (Gen, Mac,Vrfy) is existentially
unforgeable under an adaptive chosen message
attack if for all probabilistic polynomial-time
adversaries A, there is a negligible function neg
such that:

Pr|[MACforge,n(n) = 1| < neg(n).

Strong Unforgeability for MACs

Consider a message authentication code Il = (Gen, Mac,Vrfy), any
adversary A, and any value n for the security parameter.

Experiment MACsforge, n(n)

Adversary A(1™) Challenger
m k « Gen(1"

AMaCk(°) tr ()
Q is the set of all (m.,)
message, tag pairs

(m',t")

queried/received

by A MACsforge, n(n) = 1 if both of the following hold:

1. mé&Q

2. Vrfyi,(m,t) =1

Otherwise, MACsforge,n(n) = 0

Strong MACs

The strong message authentication experiment
MACsforge, n(n):

1. Akey k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle
access to Macy (). The adversary eventually
outputs (m, t). Let Q denote the set of all pairs
(m, t) that A asked its oracle.

3. A succeeds if and only if (1) Vrfy,(m,t) =1

and (2) (m,t) € Q. In that case, the output of
the experiment is defined to be 1.

Strong MACs

Definition: A message authentication code

[l = (Gen,Mac,Vrfy) is astrong MAC if for all
probabilistic polynomial-time adversaries A,
there is a negligible function neg such that:

Pr[MACSforgeA,H(n) = 1] <neg(n).

Domain Extension for MACs

CBC-MAC

Let F be a pseudorandom function, and fix a length
function £. The basic CBC-MAC construction is as follows:

 Mac:oninputakeyk € {0,1}* and a message m of
length £(n) - n, do the following:
1. Parse masm = mq,...,my, where each m; is of length n.
2. Setty:=0". Then,fori =1to?:
Sett; = Fi(ti—1 & m;).
Output t, as the tag.
* Vrfy:oninputakeyk € {0,1}", a message m, and a
tag t, do: If mis not of length £(n) - n then output O.
Otherwise, output 1 if and only if t = Mac, (m).

CBC-MAC

m, nlig ﬁfq
Iy By Fi
§

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Chosen Ciphertext Security

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.
Experiment PrivK, ' (n)
Adversary A(1") Challenger

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.

Experiment PrivK, ' (n)
Adversary A(1") Challenger
k < Gen(1™)

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.
Experiment PrivK, ' (n)
Adversary A(1") Challenger

ml/cl _ .
AEan(°),DeCk(-) C’/Tn' k Gen(l)

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.
Experiment PrivK, ' (n)
Adversary A(1") Challenger

ml/cl _ .
AEan(°),DeCk(-) C’/Tn' k Gen(l)

mOi mq

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.

Experiment PrivK, ' (n)

Adversary A(1") Challenger
m'/c' n
AEan('),DeCk(') c'/m' k= Gen(1%)
Mo, My b« {0,1}

¢ c « Enc,(my)

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Experiment PrivK ' (n)

Adversary A(1™) Challenger
m'/c k « Gen(1™
AEnci().Deck() cjm : ()
Mo, My . be<{01)
c
) T ¢ « Enci(my)
Enci().Deck() L »
A ’ c'/m’

<

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Experiment PrivK ' (n)

Adversary A(1™) Challenger
m'/c k « Gen(1"
AEnci().Deck() cjm : ()
Mo, My . be<{01}
c
) T ¢ « Enci(my)
Enci().Deck() L »
A ’ . c'/m’

I;/

CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Experiment PrivK ' (n)

Challenger
, k < Gen(1M)

> b « {0,1}

c « Enc,(my)

>

Adversary A(1")
m'/c'
AEnck().Deck ()" &t
Mg, My
. c
ml/cl
AEnck(-),Deck(-)) ¢ Jm’
I;/

>

PrivK;i(n) = 1if b’ = b and PrivK; i (n) =0if b" # b.

CCA Security

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Adversary A(1")

Experiment PrivK ' (n)

AEnck(-),Deck(-))

AEnck(-),Dec,’;(-)

Challenger
m'/c , k< Gen(1™)
c'/m’
Mo, My . be<{01)
> — ¢ < Enci(mp)
m/c .
Cl/ml
l;/

=
A may not query
challenge ciphertext c to

the decryption oracle

>

PrivK;i(n) = 1if b’ = b and PrivK; i (n) =0if b" # b.

CCA Security

The CCA Indistinguishability Experiment PrivK®® , _(n):

1. Akey k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle access to
Enc,(-) and Deck(+), and outputs a pair of messages
mgy, mq of the same length.

3. Arandom bit b « {0,1} is chosen, and then a challenge
ciphertext ¢ « Enc,(my) is computed and given to A.

4. The adversary A continues to have oracle access to
Enc,(-) and Dec(+), but is not allowed to query the latter
on th,e challenge ciphertext itself. Eventually, A outputs a
bit b'.

5. The output of the experiment is defined tobe 1 if b’ = b,
and 0 otherwise.

CCA Security

A private-key encryption scheme

[1 = (Gen, Enc, Dec) has indistinguishable
encryptions under a chosen-ciphertext attack if for
all ppt adversaries A there exists a negligible
function negl such that

_ . 1
Pr _P‘rwlf(““A,H (n) = 1] < > + negl(n),

where the probability is taken over the random
coins used by A, as well as the random coins used in
the experiment.

Authenticated Encryption

The unforgeable encryption experiment
EncForge,n(n):

1. Run Gen(1™) to obtain key k.

2. The adversary A4 is given input 1™ and access to

an encryption oracle Ency(+). The adversary
outputs a ciphertext c.

3. Letm := Decy(c), and let Q denote the set of
all queries that A asked its encryption oracle.
The output of the experiment is 1 if and only if
(1)m#Land (2) m & Q.

Authenticated Encryption

Definition: A private-key encryption scheme Il is
unforgeable if for all ppt adversaries A, there is a
negligible funcion neg such that:

Pr|EncForge,n(n) = 1| < neg(n).

Definition: A private-key encryption scheme is
an authenticated encryption scheme if it is CCA-
secure and unforgeable.

Generic Constructions

Encrypt-and-authenticate

Encryption and message authentication are
computed independently in parallel.
¢ « Ency,(m) t < Macy,, (m)

(c,)

Is this secure?

Encrypt-and-authenticate

Encryption and message authentication are
computed independently in parallel.
¢ « Ency,(m) t < Macy,, (m)

(c,)

Is this secure? NO! Tag can leak info on m

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the
message and tag are encrypted together.
t « Macy, (m) ¢ < Ency,(m||t)

Cc IS sent

Is this secure?

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the
message and tag are encrypted together.
t « Macy,,(m) ¢ < Ency (m||t)

Cc Is sent

Is this secure? NO! Encryption scheme may not
be CCA-secure.

Encrypt-then-authenticate

The message m is first encrypted and then a
MAC tag is computed over the result
¢ « Ency,(m) t e Macy,,(c)

(c, t)

Is this secure?

Encrypt-then-authenticate

The message m is first encrypted and then a
MAC tag is computed over the result
¢ « Ency,(m) t« Macy,, (c)

(c,t)

s this secure? YES! Aslong as the MAC is
strongly secure.

	macforge.pdf
	Unforgeability for MACs
	Unforgeability for MACs
	Unforgeability for MACs
	Unforgeability for MACs
	Unforgeability for MACs
	Unforgeability for MACs
	Strong Unforgeability for MACs

	privkcca.pdf
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security

	Blank Page
	Blank Page
	lec_12_notes_202.pdf
	privkcca.pdf
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security*
	CCA Security

	Blank Page
	Blank Page
	Blank Page
	Blank Page

