Cryptography

Lecture 10



Announcements

* HW3 due on Wednesday, 3/6



Agenda

e |Last time:
— MACs (K/L 4.1, 4.2, 4.3)
e This time:

— Domain Extension for MACs (K/L 4.4) and Class
Exercise solutions

— CCA security (K/L 3.7)
— Authenticated Encryption (K/L 4.5)



Message Authentication Codes

Definition: A message authentication code (MAC) consists of
three probabilistic polynomial-time algorithms

(Gen,Mac,Vrfy) such that:

1. The key-generation algorithm Gen takes as input the
security parameter 1™ and outputs a key k with |k| = n.

2. The tag-generation algorithm Mac takes as input a key k
and a message m € {0,1}*, and outputs a tag t.
t <« Mac;, (m).

3. The deterministic verification algorithm Vrfy takes as
input a key k, a message m, and a tag t. It outputs a bit b
with b = 1 meaning valid and b = 0 meaning invalid.
b:=Vrfy,(m,t).

It is required that for every n, every key k output by Gen(1™),

and every m € {0,1}*, it holds that Vrfy,(m, Mac,(m)) = 1.



Unforgeability for MACs

Consider a message authentication code Il = (Gen, Mac,Vrfy), any
adversary A, and any value n for the security parameter.

Experiment MACforge, n(n)

Adversary A(1") Challenger
m’ k « Gen(1™
AMaCk(°) tr ( )
Q is the set of all (m, t)
messages m’
queried by A

MACforge,n(n) = 1 if both of the following hold:

1. mé&Q
2. Vrfyi,(m,t) =1

Otherwise, MACforge,n(n) = 0



Security of MACs

The message authentication experiment
MACforge,n(n):

1. Akey k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle
access to Macy (). The adversary eventually

outputs (m, t). Let Q denote the set of all
gueries that A asked its oracle.

3. A succeeds if and only if (1) Vrfy,(m,t) =1

and (2) m &€ Q. In that case, the output of the
experiment is defined to be 1.



Security of MACs

Definition: A message authentication code

[I = (Gen, Mac,Vrfy) is existentially
unforgeable under an adaptive chosen message
attack if for all probabilistic polynomial-time
adversaries A, there is a negligible function neg
such that:

Pr|[MACforge,n(n) = 1| < neg(n).



Strong Unforgeability for MACs

Consider a message authentication code Il = (Gen, Mac,Vrfy), any
adversary A, and any value n for the security parameter.

Experiment MACsforge, n(n)

Adversary A(1™) Challenger
m k « Gen(1"

AMaCk(°) tr ( )
Q is the set of all (m., )
message, tag pairs

(m',t")

queried/received

by A MACsforge, n(n) = 1 if both of the following hold:

1. mé&Q

2. Vrfyi,(m,t) =1

Otherwise, MACsforge,n(n) = 0



Strong MACs

The strong message authentication experiment
MACsforge, n(n):

1. Akey k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle
access to Macy (). The adversary eventually
outputs (m, t). Let Q denote the set of all pairs
(m, t) that A asked its oracle.

3. A succeeds if and only if (1) Vrfy,(m,t) =1

and (2) (m,t) € Q. In that case, the output of
the experiment is defined to be 1.



Strong MACs

Definition: A message authentication code

[l = (Gen,Mac,Vrfy) is astrong MAC if for all
probabilistic polynomial-time adversaries A,
there is a negligible function neg such that:

Pr[MACSforgeA,H(n) = 1] <neg(n).



Domain Extension for MACs



CBC-MAC

Let F be a pseudorandom function, and fix a length
function £. The basic CBC-MAC construction is as follows:

 Mac:oninputakeyk € {0,1}* and a message m of
length £(n) - n, do the following:
1. Parse masm = mq,...,my, where each m; is of length n.
2. Setty:=0". Then,fori =1to?:
Sett; = Fi(ti—1 & m;).
Output t, as the tag.
* Vrfy:oninputakeyk € {0,1}", a message m, and a
tag t, do: If mis not of length £(n) - n then output O.
Otherwise, output 1 if and only if t = Mac, (m).



CBC-MAC

m, nlig ﬁfq
Iy By Fi
§

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).









Chosen Ciphertext Security



CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.
Experiment PrivK, ' (n)
Adversary A(1") Challenger



CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.

Experiment PrivK, ' (n)
Adversary A(1") Challenger
k < Gen(1™)



CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.
Experiment PrivK, ' (n)
Adversary A(1") Challenger

ml/cl _ .
AEan(°),DeCk(-) C’/Tn' k Gen(l )



CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.
Experiment PrivK, ' (n)
Adversary A(1") Challenger

ml/cl _ .
AEan(°),DeCk(-) C’/Tn' k Gen(l )

mOi mq



CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary A, and any value n for the security parameter.

Experiment PrivK, ' (n)

Adversary A(1") Challenger
m'/c' n
AEan('),DeCk(') c'/m' k= Gen(1%)
Mo, My b« {0,1}

¢ c « Enc,(my)



CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Experiment PrivK ' (n)

Adversary A(1™) Challenger
m'/c k « Gen(1™
AEnci().Deck() cjm : ()
Mo, My . be<{01)
c
) T ¢ « Enci(my)
Enci().Deck() L »
A ’ c'/m’

<



CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Experiment PrivK ' (n)

Adversary A(1™) Challenger
m'/c k « Gen(1"
AEnci().Deck() cjm : ()
Mo, My . be<{01}
c
) T ¢ « Enci(my)
Enci().Deck() L »
A ’ . c'/m’

I;/




CCA Security*

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Experiment PrivK ' (n)

Challenger
, k < Gen(1M)

> b « {0,1}

c « Enc,(my)

>

Adversary A(1")
m'/c'
AEnck().Deck ()" &t
Mg, My
. c
ml/cl
AEnck(-),Deck(-) ) ¢ Jm’
I;/

>

PrivK;i(n) = 1if b’ = b and PrivK; i (n) =0if b" # b.



CCA Security

Consider a private-key encryption scheme Il = (Gen, Enc, Dec), any
adversary 4, and any value n for the security parameter.

Adversary A(1")

Experiment PrivK ' (n)

AEnck(-),Deck(-) )

AEnck(-),Dec,’;(-)

Challenger
m'/c , k< Gen(1™)
c'/m’
Mo, My . be<{01)
> — ¢ < Enci(mp)
m/c .
Cl/ml
l;/

=
A may not query
challenge ciphertext c to

the decryption oracle

>

PrivK;i(n) = 1if b’ = b and PrivK; i (n) =0if b" # b.



CCA Security

The CCA Indistinguishability Experiment PrivK®® , _(n):

1. Akey k is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle access to
Enc,(-) and Deck(+), and outputs a pair of messages
mgy, mq of the same length.

3. Arandom bit b « {0,1} is chosen, and then a challenge
ciphertext ¢ « Enc,(my) is computed and given to A.

4. The adversary A continues to have oracle access to
Enc,(-) and Dec(+), but is not allowed to query the latter
on th,e challenge ciphertext itself. Eventually, A outputs a
bit b'.

5. The output of the experiment is defined tobe 1 if b’ = b,
and 0 otherwise.



CCA Security

A private-key encryption scheme

[1 = (Gen, Enc, Dec) has indistinguishable
encryptions under a chosen-ciphertext attack if for
all ppt adversaries A there exists a negligible
function negl such that

_ . 1
Pr _P‘rwlf(““A,H (n) = 1] < > + negl(n),

where the probability is taken over the random
coins used by A, as well as the random coins used in
the experiment.



Authenticated Encryption

The unforgeable encryption experiment
EncForge,n(n):

1. Run Gen(1™) to obtain key k.

2. The adversary A4 is given input 1™ and access to

an encryption oracle Ency(+). The adversary
outputs a ciphertext c.

3. Letm := Decy(c), and let Q denote the set of
all queries that A asked its encryption oracle.
The output of the experiment is 1 if and only if
(1)m#Land (2) m & Q.



Authenticated Encryption

Definition: A private-key encryption scheme Il is
unforgeable if for all ppt adversaries A, there is a
negligible funcion neg such that:

Pr|EncForge,n(n) = 1| < neg(n).

Definition: A private-key encryption scheme is
an authenticated encryption scheme if it is CCA-
secure and unforgeable.



Generic Constructions



Encrypt-and-authenticate

Encryption and message authentication are
computed independently in parallel.
¢ « Ency,(m) t < Macy,, (m)

(c, )

Is this secure?



Encrypt-and-authenticate

Encryption and message authentication are
computed independently in parallel.
¢ « Ency,(m) t < Macy,, (m)

(c, )

Is this secure? NO! Tag can leak info on m



Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the
message and tag are encrypted together.
t « Macy, (m) ¢ < Ency,(m||t)

Cc IS sent

Is this secure?



Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the
message and tag are encrypted together.
t « Macy,,(m) ¢ < Ency (m||t)

Cc Is sent

Is this secure? NO! Encryption scheme may not
be CCA-secure.



Encrypt-then-authenticate

The message m is first encrypted and then a
MAC tag is computed over the result
¢ « Ency,(m) t e Macy,,(c)

(c, t)

Is this secure?



Encrypt-then-authenticate

The message m is first encrypted and then a
MAC tag is computed over the result
¢ « Ency,(m) t« Macy,, (c)

(c,t)

s this secure? YES! Aslong as the MAC is
strongly secure.
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