Cryptography

Lecture 10

Announcements

HW3 due on Wednesday, 3/6

Agenda

- Last time:
 - MACs (K/L 4.1, 4.2, 4.3)
- This time:
 - Domain Extension for MACs (K/L 4.4) and Class Exercise solutions
 - CCA security (K/L 3.7)
 - Authenticated Encryption (K/L 4.5)

Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) such that:

- 1. The key-generation algorithm Gen takes as input the security parameter 1^n and outputs a key k with $|k| \ge n$.
- 2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t. $t \leftarrow Mac_k(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit b with b=1 meaning valid and b=0 meaning invalid. $b \coloneqq Vrfy_k(m,t)$.

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.

Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

$$MACforge_{A,\Pi}(n)=1$$
 if both of the following hold:
 $1. \ m \notin Q$
 $2. \ Vrfy_k(m,t)=1$

Otherwise,
$$MACforge_{A,\Pi}(n) = 0$$

Security of MACs

The message authentication experiment $MACforge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.

Security of MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

$$\Pr[MACforge_{A,\Pi}(n) = 1] \leq neg(n)$$
.

Strong Unforgeability for MACs

Consider a message authentication code $\Pi = (Gen, Mac, Vrfy)$, any adversary A, and any value n for the security parameter.

Otherwise, $MACsforge_{A,\Pi}(n) = 0$

Strong MACs

The strong message authentication experiment $MACsforge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all pairs (m, t) that A asked its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $(m,t) \notin Q$. In that case, the output of the experiment is defined to be 1.

Strong MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is a strong MAC if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that: $\Pr[MACsforge_{A,\Pi}(n) = 1] \leq neg(n)$.

Domain Extension for MACs

CBC-MAC

Let F be a pseudorandom function, and fix a length function ℓ . The basic CBC-MAC construction is as follows:

- Mac: on input a key $k \in \{0,1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following:
 - 1. Parse m as $m=m_1,\ldots,m_\ell$ where each m_i is of length n.
 - 2. Set $t_0 \coloneqq 0^n$. Then, for i = 1 to ℓ : Set $t_i \coloneqq F_k(t_{i-1} \oplus m_i)$.

Output t_{ℓ} as the tag.

• Vrfy: on input a key $k \in \{0,1\}^n$, a message m, and a tag t, do: If m is not of length $\ell(n) \cdot n$ then output 0. Otherwise, output 1 if and only if $t = Mac_k(m)$.

CBC-MAC

FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Chosen Ciphertext Security

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{cca}(n)$

Adversary $A(1^n)$

Challenger

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

Experiment $PrivK_{A,\Pi}^{cca}(n)$

Adversary $A(1^n)$

Challenger

 $k \leftarrow Gen(1^n)$

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

 $PrivK_{A,\Pi}^{cca}(n) = 1$ if b' = b and $PrivK_{A,\Pi}^{cca}(n) = 0$ if $b' \neq b$.

The CCA Indistinguishability Experiment $PrivK^{cca}_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
- 3. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow Enc_k(m_h)$ is computed and given to A.
- 4. The adversary A continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosen-ciphertext attack if for all ppt adversaries A there exists a negligible function negl such that

$$\Pr\left[PrivK^{cca}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + negl(n),$$

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment.

Authenticated Encryption

The unforgeable encryption experiment $EncForge_{A,\Pi}(n)$:

- 1. Run $Gen(1^n)$ to obtain key k.
- 2. The adversary A is given input 1^n and access to an encryption oracle $Enc_k(\cdot)$. The adversary outputs a ciphertext c.
- 3. Let $m \coloneqq Dec_k(c)$, and let Q denote the set of all queries that A asked its encryption oracle. The output of the experiment is 1 if and only if $(1) \ m \neq \bot$ and $(2) \ m \notin Q$.

Authenticated Encryption

Definition: A private-key encryption scheme Π is unforgeable if for all ppt adversaries A, there is a negligible funcion neg such that:

$$\Pr[EncForge_{A,\Pi}(n) = 1] \le neg(n)$$
.

Definition: A private-key encryption scheme is an authenticated encryption scheme if it is CCAsecure and unforgeable.

Generic Constructions

Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

$$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(m)$$
$$\langle c, t \rangle$$

Is this secure?

Encrypt-and-authenticate

Encryption and message authentication are computed independently in parallel.

$$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(m)$$
$$\langle c, t \rangle$$

Is this secure? NO! Tag can leak info on m

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$t \leftarrow Mac_{k_M}(m)$$
 $c \leftarrow Enc_{k_E}(m||t)$
 $c \text{ is sent}$

Is this secure?

Authenticate-then-encrypt

Here a MAC tag t is first computed, and then the message and tag are encrypted together.

$$t \leftarrow Mac_{k_M}(m)$$
 $c \leftarrow Enc_{k_E}(m||t)$
 $c \text{ is sent}$

Is this secure? NO! Encryption scheme may not be CCA-secure.

Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result

$$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(c)$$
$$\langle c, t \rangle$$

Is this secure?

Encrypt-then-authenticate

The message m is first encrypted and then a MAC tag is computed over the result

$$c \leftarrow Enc_{k_E}(m) \quad t \leftarrow Mac_{k_M}(c)$$
$$\langle c, t \rangle$$

Is this secure? YES! As long as the MAC is strongly secure.