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Traditional Crypto Assumptions

• Factoring: Given ܰ = ,݌ find ,ݍ݌ ݍ
– RSA Given ܰ = ௘ݔ ,݁ ,ݍ݌ ݀݋݉ ܰ, find ݔ.

• Discrete Log: Given ݃௫ ݀݋݉ .ݔ find ,݌
– Diffie-Hellman Assumptions (݃௫ ,݃௬ ,݃௫௬), 
(݃௫ ,݃௬ ,݃௭)



Are They Secure?
• Algorithmic Advances:

– Factoring: Best algorithm time 2 ෨ை(௡
భ
య) to factor ݊-bit number.

– Discrete log: Best algorithm 2 ෨ை(௡
భ
య) for groups ܼ௣כ , where ݌ is  ݊

bits.
• [Adrian et al. 2015] With preprocessing could possibly be feasible for 

nation-states and ݊ = 1024.
• Quasipolynomial time algorithms for small characteristic fields. Not 

known to apply in practice.

• Quantum Computers:
– Shor’s algorithm solves both factoring and discrete log in 

quantum polynomial time ( ෨ܱ(݊ଶ)).



Are They Secure?
“For those partners and vendors that have not yet made 
the transition to Suite B algorithms (ECC), we recommend 
not making a significant expenditure to do so at this point 
but instead to prepare for the upcoming quantum 
resistant algorithm transition.... Unfortunately, the 
growth of elliptic curve use has bumped up against the 
fact of continued progress in the research on quantum 
computing, necessitating a re-evaluation of our 
cryptographic strategy. ”—NSA Statement, August 2015



Post-Quantum Approach

• New set of assumptions based on finding 
short vectors in lattices.

• Believed to be hard for quantum computers.
• Evidence of hardness “worst case to average 

case reduction”.
• Versatile: Can essentially construct all 

cryptosystems out of these assumptions.



My Research
• New efficient cryptosystems from post-quantum and FHE

assumptions [1], [7]
• Concrete hardness of post-quantum cryptosystems (with or

without side information) [2], [3], [4], [5], [6], [8], [9]
• Concrete hardness of FHE (with or without side information) [10]
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Lattices
An ݊-dimensional lattice L is an additive discrete subgroup of ܴ௡. A 
basis ࡮ א ܴ௡×௡ defines a lattice L(࡮) in the following way: 

ܮ ࡮ = {࢜ א ܴ௡ .ݏ .ݐ ࢜ = ࢠ࡮ for some ࢠ א ܼ௡}.
“integer linear combinations of the basis vectors”

ݎ

 The :((࡮)ࡸ)࢏ࣅ th successive minima-࢏
smallest radius ݎ such that there are ݅
linearly independent vectors 
,ଵݒ} … , {௜ݒ of length at most ݎ.

Shortest vector: (1,2)
ଵߣ = 5

Shortest basis: 3 1
1 2
ଶߣ = 10



Lattices
An ݊-dimensional lattice L is an additive discrete subgroup of ܴ௡. A 
basis ࡮ א ܴ௡×௡ defines a lattice L(࡮) in the following way: 

ܮ ࡮ = {࢜ א ܴ௡ .ݏ .ݐ ࢜ = ࢠ࡮ for some ࢠ א ܼ௡}.
“integer linear combinations of the basis vectors”

ݎ

Basis is not unique!

For the lattice to the right,
3 1
1 2 form a basis

4 9
3 8 also form a basis

Given two bases ܤ,ܤǯ, they define the 
same lattice iff ǯܤ = ܷ where ,ܷܤ is a 
unimodular matrix (determinant ±1). 



Hard Lattice Problems
• Are all parameterized by “approximation factor” ߛ > 1.
• Shortest Vector Problem (SVP): Given a basis B, find a 

non-zero vector ࢜ א (࡮)ܮ whose length is at most ߛ ڄ
.((࡮)ܮ)ଵߣ

• Shortest Independent Vector Problem (SIVP): Given a 
basis B, find a linearly independent set {ݒଵ, … , {௡ݒ such 
that all vectors have length at most ߛ ڄ .((࡮)ܮ)௡ߣ

• Gap Shortest vector problem (GapSVP): Given a basis 
B, and a radius r > 0 
– Return YES if ߣଵ ܮ ܤ ൑ ݎ
– Return NO if ߣଵ ܮ ܤ > ߛ ڄ .ݎ

Believed hard 
even for a 
quantum 

computer!



Cryptographic Hard Problems



The SIS Problem

= ݀݋0݉ A݌ z×

Problem: Given A, find z א 0,1 ௠

(or sufficiently “short” z)

Public ݊ ×݉ matrix A, with 
entries chosen at random 
over ܼ௣

݊ ا ݉

Dimension ݊

Dimension ݉



Relation to Lattices

• Worst-Case to Average-Case Reduction: 
Breaking the cryptosystem on average is as 
hard as breaking the hardest instance of the 
underlying lattice problem.

• SIS:
– Worst-Case to Average-Case Reduction from SIVP.



CRHF from Lattices



CRHF from Lattices

Public 
Matrix:

Input:A z

To evaluate the 
hash on ݖ
output:

Public ݊ ×݉ matrix A, with 
entries chosen at random 
over ܼ௣

ݖ א 0,1 ௠

z×A = u

ݑ א ܼ௣௡



CRHF from Lattices

A z

Given a collision
,ଵݖ ଶݖ א 0,1 ௠: ଵ×Aݖ

ଶݖ

×= A

Obtain
(ଶݖଵെݖ) א
െ1,0,1 ௠: ×ଵݖ ( െ )A = 0

ଶݖ



The LWE Problem (Search)

A × s + e = u

Public ݉ × ݊ matrix A, with 
entries chosen at random 
over ܼ௣

Secret ݊-dimension vector s 
with entries chosen at random

݉-dimension error 
vector e, with entries 
sampled from ɖ.

Operations are mod p.

Problem: Given, A, u = As+e, find s.



The LWE Problem (Decision)

A × s + e = u

Public ݉ × ݊ matrix A, with 
entries chosen at random 
over ܼ௣

Secret ݊-dimension vector s 
with entries chosen at random

݉-dimension error 
vector e, with entries 
sampled from ɖ.

Operations are mod p.

ൎ v

Problem: Distinguish (A , u) from (A, v)



Relation to Lattices

• Worst-Case to Average-Case Reduction: 
Breaking the cryptosystem on average is as 
hard as breaking the hardest instance of the 
underlying lattice problem.

• LWE:
– Worst-Case to Average-Case Quantum Reduction 

from SIVP.
– Worst-Case to Average-Case Classical Reductions 

from GapSVP.



Lattice-Based Encryption



Regev’s Cryptosystem [Regev ’04]

A u

s

Public 
Key:

Secret 
Key:

u = As + e



Regev’s Cryptosystem—Encryption of 
݉ א {0,1}

Ar

r

(1)

(2)

×

+݉ ڄ
݌
2

r א 0,1 ௠ chosen at 
random.

u
×



Regev’s Cryptosystem—Decryption

r

Ar s×

െ
u

×

×

+݉ ڄ
݌
2

u = As + e



Regev’s Cryptosystem—Decryption 

r

Ar s×

െ
u

×

× +݉ ڄ
݌
2

u = As + e



Regev’s Cryptosystem—Decryption 

+݉ ڄ
݌
2r

u
×

r ×

െ

w w = As

u = As + e

= r × e +݉ ڄ
݌
2



Regev’s Cryptosystem—Decryption 

+݉ ڄ
݌
2r

u
×

r ×

െ

w w = As

u = As + e

= r × e +݉ ڄ
݌
2

ൎ 0 +݉ ڄ
݌
2



Properties of LWE

• Equivalance of Search/Decision LWE
• Equivalence of LWE with random secret/secret 

drawn from error distribution



Efficiency
• Efficiency is a main concern in lattice-based 

cryptosystems.
• In both SIS and LWE-based cryptosystems, the 

public key consists of a random matrix of size 
m× n (݉ ൒ ݊ log   requiring space  ,(݌
ܱ(݊ଶlogଶ (݌ .
– RSA and discrete-log based cryptosystems: public 

key size is linear in the security parameter.  
• To reduce the public key size, consider lattices 

with structure.
• This is the Ring-LWE setting. 



Ring-LWE Setting

• Highly efficient key exchange protocols are 
possible in the Ring-LWE setting. 
– Similar to Diffie-Hellman Key Exchange

• It is likely that at least one such scheme will be 
standardized by NIST.

• Details in the slides, but will skip in the 
lecture.



Summary

• Lattice-based cryptography is a promising 
approach for efficient, post-quantum 
cryptography.

• All the basic public key primitives can be 
constructed from these assumptions:
– Public key encryption, Key Exchange, Digital 

Signatures
• For more information on research projects, 

please contact me at: danadach@umd.edu



Thank you!



The Ring Setting
• Quotient ring Z௤[ݔ]/Ȱ௠(ݔ), where Ȱ௠ is the m-th

cyclotomic polynomial of degree ߮(݉)
– e.g.,Ȱଶ௡ = ௡ݔ + 1,݊ = ݍ,2 = 13. 
– ଶݔ = െ1݉݀݋ ଶݔ) + 1)
– ଷݔ12 + ଶݔ15 + ͻݔ + 25 ՜ ଷݔ12 + ଶݔ2 + ͻݔ +
12 ՜ ݔ െ 2 + ͻݔ + 12 ՜ 10,10 .

• Lattice is defined as an ideal ܫ ك   .(ݔ)Ȱ௠/[ݔ]ܼ
• Ring-LWE and ring-SIS problems are defined by 

substituting the matrix A with polynomials from the 
quotient ring and substituting polynomial 
multiplication for matrix-vector multiplication.  

• The public key is now a polynomial in Z௤[ݔ]/Ȱ௠(ݔ), 
and so can be described using ܱ(݊ log (ݍ bits.



NTT Transform
Consider Ȱ௠, where ݉ is a power of 2. Then degree is equal 
to ݊, power of 2, ݉ = ʹ݊.Ȱଶ௡ = ௡ݔ + 1
• Consider prime ݍ s.t. ݍ = ݀݋1݉ ʹ݊.
• Then we have ݊ ʹ݊-th primitive roots modulo ݍ

– Why? ܼ௤כ is cyclic with order ݍ െ 1. ʹ݊ | ݍ െ 1 .
– Let ݃ be a generator of ܼ௤כ . ݃ is a ݍ െ 1 -th primitive root.
– ݃௔ڄଶ௡ = ݃௤ିଵ, since ʹ݊ | ݍ) െ 1). ݃௔ is a ʹ݊-th primitive root. 

Also (݃௔)௜ , where ݅ is relatively prime to ʹ݊.
– Note that ݃௔ ௡ = െ1݉݀݋ ௡ݔ Modulo .ݍ + 1 means ݔ௡ = െ1.
– Let ߛଵ, … , ௡ߛ be the ݊ number of ʹ݊-th primitive roots

• For a polynomial ݌ ݔ א ܼ௤ ݔ ௡+1ݔ/
• For every ߛ௜ , ݌ ௜ߛ ݀݋݉ ݌ is equal to taking (ݔ)݌ modulo 
௡ݔ + 1 and modulo ݍ and then evaluating the reduced 
polynomial at ߛ௜.



NTT Transform 

• For a polynomial ݌ ݔ א ܼ௤ ݔ ௡+1ݔ/
• Evaluate ݌ ݔ on all ݊ number of ʹ݊-th

primitive roots. Obtain a vector 
݌ ଵߛ … .(௡ߛ)݌

• Can now do both addition and multiplication 
coordinate-wise.



Key Exchange from Ring-LWE



Simple Key Exchange

ଵܲ ଶܲ

ଵݏ ଶݏ

ଵݑ,ܽ) = ܽ ڄ ଵݏ + ݁ଵ)

ଶݑ,ܽ) = ܽ ڄ ଶݏ + ݁ଶ)

ଶݑ ڄ ଵݏ ൎ ܽ ڄ ଶݏ ڄ ଵݏ ଵݑ ڄ ଶݏ ൎ ܽ ڄ ଵݏ ڄ ଶRECONCILIATIONݏ


