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Traditional Crypto Assumptions

* Factoring: Given N = pq, find p, g
— RSA Given N = pqg, e, x® mod N, find x.

* Discrete Log: Given g* mod p, find x.

— Diffie-Hellman Assumptions (g*, g7, g*¥),
(9*,9”,9%)



Are They Secure?

* Algorithmic Advances:
1

— Factoring: Best algorithm time 20(13) g factor n-bit number.
1

— Discrete log: Best algorithm 20(3) fop groups Z,,, wherepis n
bits.

e [Adrian et al. 2015] With preprocessing could possibly be feasible for
nation-states and n = 1024.

* Quasipolynomial time algorithms for small characteristic fields. Not
known to apply in practice.

* Quantum Computers:

— Shor’s algorithm solves both factoring and discrete log in
quantum polynomial time (0 (n?)).



Are They Secure?

“For those partners and vendors that have not yet made
the transition to Suite B algorithms (ECC), we recommend
not making a significant expenditure to do so at this point
but instead to prepare for the upcoming quantum
resistant algorithm transition.... Unfortunately, the
growth of elliptic curve use has bumped up against the
fact of continued progress in the research on quantum
computing, necessitating a re-evaluation of our
cryptographic strategy. ”—NSA Statement, August 2015

NIST Kicks Off Effort to Defend Encrypted Data from Quantum
Computer Threat

April 28, 2016

Google Dabbles in Post-Quantum
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Post-Quantum Approach

New set of assumptions based on finding
short vectors in lattices.

Believed to be hard for guantum computers.

Evidence of hardness “worst case to average
case reduction”.

Versatile: Can essentially construct all
cryptosystems out of these assumptions.



My Research

* New efficient cryptosystems from post-quantum and FHE
assumptions [1], [7]

e Concrete hardness of post-quantum cryptosystems (with or
without side information) [2], [3], [4], [5], [6], [8], [9]

* Concrete hardness of FHE (with or without side information) [10]
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Lattices

An n-dimensional(l,atticegis an additive\discrete/subgroup o
basis(B € R™™ Yefines a lattice L(B) in the following way:

L(B) = {veER"s.t. v = Bzfor someyz € Z"I}.

“integer linear combinations of the basis vectors”

i-th successive minima 4;(L(B)): The
smallest radius r such that there are i
linearly independent vectors

{vq, ..., v;} of length at most r.

Shortest vector: (1,2)
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Lattices

An n-dimensional lattice L is an additive discrete subgroup of R™. A
basis B € R™*™ defines a lattice L(B) in the following way:

L(B) = {veER"s.t. v = Bzforsomez € Z"}.
“integer linear combinations of the basis vectors”

o
Basis is not unique! /

o o
For the lattice to the right, //

3 1 . 7 - ?
1 9 form a basis L Q//

4 9 : ® / o
also form a basis /
3 8 ] u

Given two bases B, B’, they define the /°

same lattice iff B = BU,whereUisar
unimodular matrix (determinant +1). /
N2 S . P .

ok <R 'm)f([zb\“ﬁ \‘S\Q \V\\/.Q/Qe S h/

&V\%'L%L'\




Hard Lattice Problems

* Are all parameterized by “approximation factor” y > 1.

* Shortest Vector Problem (SVP): Given a basis B, find a
vector v € L(B) whose length is at most y-—( 5
El (L(B))7
e Shortest Independent Vector Problem (SIVP): Given a

basis B, find a linearly independent set {v,, ..., v,,} such
that all vectors have length at most y - A4,,(L(B)).

* Gap Shortest vector problem (GapSVP): Given a basis
B, and aradiusr >0

— Return YES if 4;(L(B)) < 7 Believed hard
— Return NO if Al(L(B)) >y -r. even for a

@Y oS¢y ‘\O\U"\}

quantum
computer!




Cryptographic Hard Problems



oriest \V‘W W
The SIS Problem

Dimension m

Public n X m matrix A, with
entries chosen at random

overZ@ 2~\)0}‘,\‘7\/\

\b\( n<k<m

Problem: Given A, find z € {0,1}™
(or sufficiently “short” z)

Dimension n



Relation to Lattices

* Worst-Case to Average-Case Reduction:
Breaking the cryptosystem on average is as

hard as breaking the hardest instance of the
underlying lattice problem.

e SIS:
— Worst-Case to Average-Case Reduction from fSIVP.
%%‘]%M@AT
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CRHF from Lattices



CRHF from Lattices

m
Public A Input: z €{0,1}
Matrix: z

Public n X m matrix A, with
entries chosen at random

overZ
- I u EZ”

S\ g S‘o]u’\*\cf\—w

Aall’ N ‘A?@:U\ A 22}6 molp

To evaluate the
hash on z
output:




CRHF from Lattices

XX

Given a collision
Z1,2Z7 € {O,l}m




The LWE Problem (Search)
U_am‘mra et Crrars

Secret n-dimension vector s
with entries chosen at random Operations are mod p.

N
()
= m

Public m X n matrix A, with m-dimension error
entries chosen at random vector e, with entries
over Z, sampled from .

Problem: Given, A, u = As+e, fin@

N ; ,
N\SVGS o of Lot eciucf\'dﬂ?



The LWE Problem (Decision)

A% hard. a8
Sarcda

Secret n-dimension vector s \/U&JU\
n with entries chosen at random Operations are mod p.
W A X + = u ~
v
Public m X n matrix A, with m-dimension error ’
entries chosen at random vector e, with entries Vo OViA
over Z,, sampled from .

Problem: Distinguish (A, u) from (A, v)



Relation to Lattices

* Worst-Case to Average-Case Reduction:
Breaking the cryptosystem on average is as
hard as breaking the hardest instance of the
underlying lattice problem.

* [WE:
— Worst-Case to Average-Case Quantum Reductionﬁ\
from SIVP. Vo
od

— Worst-Case to Average-Case Classical Reductions
from GapSVP. -



Lattice-Based Encryption



Regev’s Cryptosystem [Regev '04]
Joic 10»6 @uubﬁch\

Public
Key: JAN — U=As+e




Regev’s Cryptosystem—Encryption of

m € {0,1}
N
wm m 5
r € {0,1}"" chosen at d\rx nQU-81e7
random. N




Regev’s Cryptosystem—Decryption
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u=As+e




Regev’s Cryptosystem—Decryption
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Regev’s Cryptosystem—Decryption




Regev’s Cryptosystem—Decryption
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Properties of LWE

* Equivalance of Search/Decision LWE

* Equivalence of LWE with random secret/secret
drawn from error distribution



Efficiency

Efficiency is a main concern in lattice-based
cryptosystems.

In both SIS and LWE-based cryptosystems, the

public key consists of a random matrix of size

m X n (m = nlogp), requiring space

0(n%log? p) .

— RSA and discrete-log based cryptosystems: public
key size is linear in the security parameter.

To reduce the public key size, consider lattices

with structure. -

. L e ie wedry
This is the\ng-LWE setting. ey Aoy




Ring-LWE Setting

* Highly efficient key exchange protocols are
possible in the Ring-LWE setting.

— Similar to Diffie-Hellman Key Exchange

* Itis likely that at least one such scheme will be
standardized by NIST. %v&\w Solrsns

+ Details in the slides, but will skip in the
lecture.




Summary

* Lattice-based cryptography is a promising
approach for efficient, post-quantum
cryptography.

* All the basic public key primitives can be
constructed from these assumptionS'

— Publw Key ExchangelegltaI
| Signatures

/”d ° .
* For more information on research projects,

please contact me at: danadach@umd.edu




Thank you!



The Ring Setting

Quotient ring Z, [x]/®, (x), where @, is the m-th
cyclotomic polynomlal of degree p(m)

—eg,d,, = x"+1,n=2,q = 13.

— x? = —1mod (x* + 1)

— 12x3 + 15x% + 9x + 25 - 12x3 + 2x% + 9x +
12 > x—24+9x+ 12 - (10,10).

Lattice is defined as anideal I € Z[x]/®,,(x).

Ring-LWE and ring-SIS problems are defined by
substituting the matrix A with polynomials from the
guotient ring and substituting polynomial
multiplication for matrix-vector multiplication.

The public key is now a polynomial in Z [x]/®,, (x),
and so can be described using O(n log q) bits.



NTT Transform

Consider @,,,, where m is a power of 2. Then degree is equal
ton, powerof2, m =2n.d,, = x"+1

* Consider prime g s.t. ¢ = 1 mod 2n.

* Then we have n 2n-th primitive roots modulo g
— Why? Zg is cyclic with order ¢ — 1. 2n | (¢ — 1).
— Let g be a generator of Z;. g is a (¢ — 1)-th primitive root.

a-2n

- g = g971, since 2n | (q —1). g is a 2n-th primitive root.
Also (g%)*, where i is relatively prime to 2n.

— Note that (g%)™ = —1 mod q. Modulo x™ + 1 means x™ = —1.
— Let y4, ..., ¥, be the n number of 2n-th primitive roots
* Forapolynomial p(x) € Z,[x]/x"+1

* Foreveryy;,p(y;) mod p is equal to taking p(x) modulo
x™ + 1 and modulo g and then evaluating the reduced
polynomial at y;.



NTT Transform

* For a polynomial p(x) € Z,[x]/x"+1

* Evaluate p(x) on all n number of 2n-th
primitive roots. Obtain a vector

p(y1) . p(¥n)-
* Can now do both addition and multiplication
coordinate-wise.



Key Exchange from Ring-LWE



Simple Key Exchange

(a,uy = a- s; + eq1)

(a,u, = a- s, + e,)

uz . Sl ~ a - SZ . Sl RECONCILIATION ul . SZ ~ - Sl . SZ



