
Cryptography ENEE/CMSC/MATH 456: Homework 1
Due by beginning of class on 2/7/2024.

1. In this exercise, we look at different conditions under which the shift, mono-alphabetic substi-
tution, and Vigenere ciphers are perfectly secret.
(a) Prove that if only a single character is encrypted, then the shift cipher is perfectly secret.
(b) What is the largest message space M for which the mono-alphabetic substitution cipher

provides perfect secrecy?
(c) Prove that the Vigenere cipher using (fixed) period t is perfectly secret when used to encrypt

messages of length t.

2. Let E = (Gen,Enc,Dec) over message space M with keyspace K and ciphertext space C be an
encryption scheme that achieves perfect secrecy. Let M1 ⊆M,M2 =M\M1 be two subsets
ofM such that |M1| ≥ 1, |M2| ≥ 1. Furthermore, let D1 be the uniform distribution overM1,
D2 be the uniform distribution over M2.
Finally, let C1 (resp. C2) be the random variable corresponding to the distribution over cipher-
texts when messages are sampled from D1 (resp. D2) and keys are sampled by Gen.

Is it possible that there is a ciphertext c ∈ C such that Pr[C1 = c] = 0 and Pr[C2 = c] > 0?
If yes, give an example of a specific encryption scheme that is perfectly secret and for which
the above holds. If not, prove that for any encryption scheme that is perfectly secret, the above
cannot hold.

3. Assume we require only that an encryption scheme (Gen,Enc,Dec) with message spaceM satisfy
the following: For all m ∈ M, we have Pr[DecK(EncK(m)) = m] ≥ 2−t. (This probability is
taken over choice of the key as well as any randomness used during encryption/decryption.)
Show that perfect secrecy can be achieved with |K| < |M| when t ≥ 1. Prove a lower bound on
the size of K in terms of t.
Hint: How would the proof of Theorem 2.11 change if decryption only returns the correct answer
with probability 2−t?

4. In this problem we consider definitions of perfect secrecy for the encryption of two messages
(using the same key). Here we consider distributions over pairs of messages from the message
spaceM; we let M1,M2 be random variables denoting the first and second message, respectively.
We generate a (single) key k, sample messages (m1,m2) according to the given distribution,
and then compute ciphertexts c1 ← Enck(m1) and c2 ← Enck(m2); this induces a distribution
over pairs of ciphertexts and we let C1, C2 be the corresponding random variables.

(a) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two messages if for all distribu-
tions over M×M, all m1,m2 ∈ M, and all ciphertexts c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 =
c2] > 0: Pr[M1 = m1 ∧M2 = m2|C1 = c1 ∧C2 = c2] = Pr[M1 = m1 ∧M2 = m2]. Prove that
no encryption scheme can satisfy this definition.
Hint: Take m1 ̸= m2 but c1 = c2.
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(b) Say encryption scheme E = (Gen,Enc,Dec) is perfectly secret for two distinct messages if
for all distributions over M×M where the first and second messages are guaranteed to
be different (i.e., distributions over pairs of distinct messages), all m1,m2 ∈ M, and all
c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0: Pr[M1 = m1 ∧M2 = m2|C1 = c1 ∧ C2 = c2] =
Pr[M1 = m1 ∧M2 = m2]. Show an encryption scheme that provably satisfies this definition.
Hint: The encryption scheme you propose need not be efficient, though an efficient solution
is possible.

5. When using the one-time pad with the key k = 0ℓ, we have Enck(m) = k ⊕ m = m and the
message is sent in the clear! It has therefore been suggested to modify the one-time pad by only
encrypting with k ̸= 0ℓ (i.e., to have Gen choose k uniformly at random from the set of non-zero
keys of length ℓ). Is this modified scheme still perfectly secret? Explain.

6. For each of the following encryption schemes, state whether the scheme achieves perfect secrecy.
Justify your answer using Definition 2.3, Lemma 2.4, Theorem 2.10 and/or Theorem 2.11.
– Message space M = {1, . . . , 6}. Key space K = {1, ..., 6}. Gen() chooses a key k at random

from K. Let k′ be such that k · k′ ≡ 1 mod 7 (e.g. for k = 5, we have k′ = 3 since (5 · 3)
mod 7 ≡ (15) mod 7 = 1 mod 7). Enck(m) returns m · k mod 7. Deck(c) returns c · k′
mod 7.

– What happens when we use the same scheme as above except with M = {1, . . . , 8} and
K = {1, . . . , 8}? I.e. Gen() chooses a key k at random from K and Enck(m) returns m · k
mod 9.

7. Write a program that increments a counter 224, 225, 226, . . . , 233 times, and measure how many
seconds your program takes to run in each case. Estimate how many years your program would
take to increment a counter 264 or 2128 times. Based on your findings, what do you think would
be a reasonably setting for the security parameter k of a cryptosystem which is assumed to be
secure against attackers running in time 2

√
k?

8. The best algorithm known today for finding the prime factors of an n-bit number runs in time
2c·n

1
3 (logn)

2
3 . Assuming 4Ghz computers and c = 1 (and that the units of the given expression

are clock cycles), estimate the size of numbers that cannot be factored for the next 100 years.
You may assume that the log in the above formula is log base 2.

9. Prove the equivalence of Definition 3.8 and Definition 3.9.

10. Let G be a pseudorandom generator that on security paramter n > 1, takes as input bitstrings
of length n and has expansion factor ℓ(n) > 2n. In each of the following cases, say whether G′

is necessarily a pseudorandom generator. If yes, give a proof; if not, show a counterexample.
(a) Define G′(s) = G(s1, . . . , s⌈n/2⌉), where s = s1, . . . , sn.
(b) Define G′(s) = G(0|s|||s).
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(c) Define G′(s) = G(rotate(s, 1)), where rotate(s, 1) rotates the bits of s to the right by one
position.
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