ENEE/CMSC/MATH 456:
 Cryptography Stream Cipher Class
 Exercise 3/27/23

```
ALGORITHM 6.1
Init algorithm for RC4
Input: 16-byte key \(k\)
Output: Initial state ( \(S, i, j\) )
(Note: All addition is done modulo 256 )
for \(i=0\) to 255 :
    \(S[i]:=i\)
    \(k[i]:=k[i \bmod 16]\)
\(j:=0\)
for \(i=0\) to 255 :
    \(j:=j+S[i]+k[i]\)
    Swap \(S[i]\) and \(S[j]\)
\(j:=0, \quad i:=0\)
return \((S, i, j)\)
```


ALGORITHM 6.2

GetBits algorithm for RC4
Input: Current state (S, i, j)
Output: Updated state (S, i, j); output byte y
(Note: All addition is done modulo 256)
$i:=i+1$
$j:=j+S[i]$
Swap $S[i]$ and $S[j]$
$t:=S[i]+S[j]$
$y:=S[t]$
return $(S, i, j), y$

Let S^{0} denote the initial state, S^{i} denote the state after i calls to GetBits.
Consider Event 1: $\left(S^{0}[2]=0\right) \wedge\left(S^{0}[1]=X \neq 2\right)$
What is the probability that Event 1 occurs? (For this part, assume Init outputs a perfectly random permutation of the values from 0 to 255)

Assuming Event 1 occurs, what is the value of $S^{1}[X]$ (i.e. the value in position $S[X]$ after the first iteration? \qquad
Assuming Event 1 occurs, what is the value of $S^{2}[X], S^{2}[2]$ (i.e. the values in positions $S[X]$ and $S[2]$ after the second iteration? \qquad
Assuming Event 1 occurs, what value (call this V) is outputted in the second iteration?

Assuming Event 1 does not occur, V is uniformly distributed.
Towards what value is V biased and with what probability? \qquad

