ENEE/CMSC/MATH 456: Cryptography
Stream Cipher Class Exercise 3/28/22

ALGORITHM 6.1
Init algorithm for RC 4
Input: 16-byte key k
Output: Initial state (S, i.j)
(Note: All addition is done modulo 256)
for $i=0$ to 255 :
$S[i]:=i$
$k[i]:=k[i \bmod 16]$
$j:=0$
for $i=0$ to 255 :
$j:=j+S[i]+k[i]$
Swap $S[i]$ and $S[j]$
$j:=0, \quad i:=0$
return (S.i,j)

ALGORITHM 6.2
GetBits algorithm for RC4
Input: Current state (S^{\prime}, i, j)
Output: Updated state (S, i, j): output byte y
(Note: All addition is done modulo 256)
$i:=i+1$
$j:=j+S[i]$
Swap $S[i]$ and $S[j]$
$t:=S[i]+S[j]$
$y:=S[t]$
return $(S, i, j), y$

Let S^{0} denote the initial state, S^{i} denote the state after i calls to GetBits.

Consider Event 1: $\left(S^{0}[2]=0\right) \wedge\left(S^{0}[1]=X \neq 2\right)$

What is the probability that Event 1 occurs? (For this part, assume Init outputs a perfectly random permutation of the values from 0 to 255)

Assuming Event 1 occurs, what is the value of $S^{1}[X]$ (i.e. the value in position $S[X]$ after the first iteration? \qquad
Assuming Event 1 occurs, what is the value of $S^{2}[X], S^{2}[2]$ (i.e. the values in positions $S[X]$ and S [2] after the second iteration? \qquad
Assuming Event 1 occurs, what value (call this V) is outputted in the second iteration?
\qquad
Assuming Event 1 does not occur, V is uniformly distributed. biased towards 0.
Towards what value is V biased and with what probability? \qquad

First iteration:

$$
i=1
$$

$$
j=S(1]=x
$$

Swap $S[1]$ and $S[x]$

$$
S[1]=S[x]
$$

$$
S[x]=x
$$

Second iteration:

$$
\begin{aligned}
& i=2 \\
& j=x+5[2]=x+0=x
\end{aligned}
$$

Swap $S[2]$ and $S[x]$ return, 0 .

$$
S[2]=S[x]=x
$$

$$
S[x]=0
$$

