Cryptography

Lecture 6

Announcements

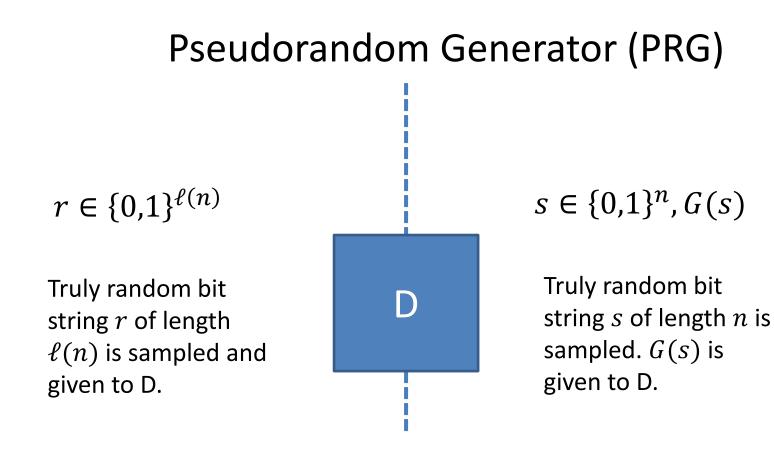
• HW2 due Wednesday, 2/15

Agenda

- Last time:
 - Indistinguishability in the presence of an eavesdropper (K/L 3.2)
 - Defining PRG (K/L 3.3)
- This time:
 - Constructing computationally secure SKE from PRG (K/L 3.3)
 - Security Proof (K/L 3.3)
 - Class Exercise on PRG's

Pseudorandom Generator

- Functionality
 - Deterministic algorithm G
 - Takes as input a short random seed s
 - Ouputs a long string G(s)
- Security
 - No efficient algorithm can "distinguish" G(s) from a truly random string r.
 - i.e. passes all "statistical tests."
- Intuition:
 - Stretches a small amount of true randomness to a larger amount of pseudorandomness.
- Why is this useful?
 - We will see that pseudorandom generators will allow us to beat the Shannon bound of $|K| \ge |M|$.
 - I.e. we will build a computationally secure encryption scheme with |K| < |M|



PRF: Any efficient D cannot tell which world it is in. $|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le negligible$

Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function negl such that:

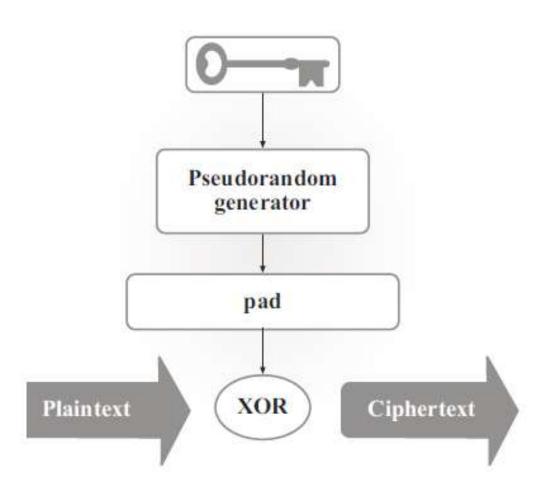
 $\left|\Pr[D(r)=1] - \Pr[D(G(s))=1]\right| \le negl(n),$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.

Constructing Secure Encryption Schemes

A Secure Fixed-Length Encryption Scheme



The Encryption Scheme

Let G be a pseudorandom generator with expansion factor ℓ . Define a private-key encryption scheme for messages of length ℓ as follows:

- Gen: on input 1^n , choose $k \leftarrow \{0,1\}^n$ uniformly at random and output it as the key.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, output the ciphertext

$$c \coloneqq G(k) \oplus m.$$

• Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{\ell(n)}$, output the plaintext message $m \coloneqq G(k) \bigoplus c$.

Theorem: If *G* is a pseudorandom generator, then the Construction above is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.

Indistinguishability in the presence of an eavesdropper

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$\Pr\left[\operatorname{PrivK^{eav}}_{A,\Pi}(n) = 1\right] \leq \frac{1}{2} + \operatorname{negl}(n),$$

Where the prob. Is taken over the random coins used by A, as well as the random coins used in the experiment.

Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function negl such that:

$$\left|\Pr[D(r)=1] - \Pr[D(G(s))=1]\right| \le negl(n),$$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.

• Proof by reduction method.

Proof: Let *A* be a ppt adversary trying to break the security of the construction. We construct a distinguisher *D* that uses *A* as a subroutine to break the security of the PRG.

Distinguisher D:

D is given as input a string $w \in \{0,1\}^{\ell(n)}$.

- 1. Run $A(1^n)$ to obtain messages $m_0, m_1 \in \{0,1\}^{\ell(n)}$.
- 2. Choose a uniform bit $b \in \{0,1\}$. Set $c \coloneqq w \bigoplus m_b$.
- 3. Give c to A and obtain output b'. Output 1 if b' = b, and output 0 otherwise.

Consider the probability D outputs 1 in the case that w is random string r vs. w is a pseudorandom string G(s).

- When w is random, D outputs 1 with probability exactly 1/2. Why?
- When w is pseudorandom, D outputs 1 with probability $\Pr\left[PrivK^{eav}_{A,\Pi}(n) = 1\right] = \frac{1}{2} + \rho(n)$, where ρ is non-negligible.

D's distinguishing probability is:

$$\left|\frac{1}{2} - \left(\frac{1}{2} + \rho(n)\right)\right| = \rho(n).$$

This is a contradiction to the security of the PRG, since ρ is non-negligible.