Cryptography

Lecture 5

Announcements

- NEW: HW2 due Wednesday 2/15
- Canvas quizzes due on 2/10 at 11:59pm

Agenda

- Last time:
 - Limitations of Perfect Secrecy (K/L 2.3)
 - Shannon's Theorem (K/L 2.4)
 - The Computational Approach (K/L 3.1)
- This time:
 - The Computational Approach (K/L 3.1)
 - Defining computationally secure SKE (K/L 3.2)

The Computational Approach

Two main relaxations:

- poky-time
- 1. Security is only guaranteed against <u>efficient</u> adversaries that run for some feasible amount of time.
- 2. Adversaries can potentially succeed with some very small probability.

neg).

- Integer valued security parameter denoted by n that parameterizes both the cryptographic schemes as well as all involved parties.
- When honest parties initialize a scheme, they $\frac{N^2}{N^2}$ choose some value n for the security parameter.
- Can think of security parameter as corresponding to the length of the key.
- Security parameter is assumed to be known to any adversary attacking the scheme.
- View run time of the adversary and its success probability as functions of the security parameter.

Polynomial Time

all about the quartifiers

- Efficient adversaries = Polynomial time
 adversaries

 \[
 \bigcolon \limits_\frac{1}{2} \li
 - There is some polynomial p such that the adversary runs for time at most p(n) when the security parameter is n.
 - Honest parties also run in polynomial time.
 - The adversary may be much more powerful than η^2 the honest parties.

- probability
 - A function f is negligible if for every polynomial pand all sufficiently large values of n it holds that $f(n) < \frac{1}{p(n)}$.
 - Intuition, $f(n) < n^{-c}$ for every constant c, as n goes to infinity.

$$f(n):=\frac{1}{n^2}$$
 $\frac{1}{2^n}$ $\frac{1}{n^{n-1}}$ $\frac{1}{n^{n-1}}$

Practical Implications of Computational Security

- For key size n, any adversary running in time $2^{n/2}$ breaks the scheme with probability $1/2^{n/2}$
- Meanwhile, Gen, Enc, Dec each take time n^2 .
- If n = 128 then:
 - Gen, Enc, Dec take time 16,384
 - Adversarial run time is $2^{64} \approx 10^{18}$
- If n = 256 then:
 - Gen, Enc, Dec quadruples--takes time 65,536
 - Adversary run time is multiplied by 2^{64} . Becomes $2^{128} \approx 10^{38}$

Defining Computationally Secure Encryption

A private-key encryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

- 1. The key-generation algorithm Gen takes as input security parameter (1^n) and outputs a key k denoted $k \leftarrow Gen(1^n)$. We assume WLOG that $|k| \ge n$.
- 2. The encryption algorithm Enc takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a ciphertext c denoted $c \leftarrow Enc_{k}(m)$. Enc can be prob.
- 3. The decryption algorithm Dec takes as input a key \vec{k} and ciphertext c and outputs a message m denoted by $m \coloneqq Dec_k(c)$. Qways deterministic.

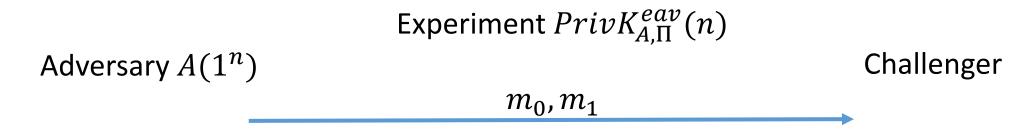
 Correctness: For every n, every key $k \leftarrow Gen(1^n)$, and every

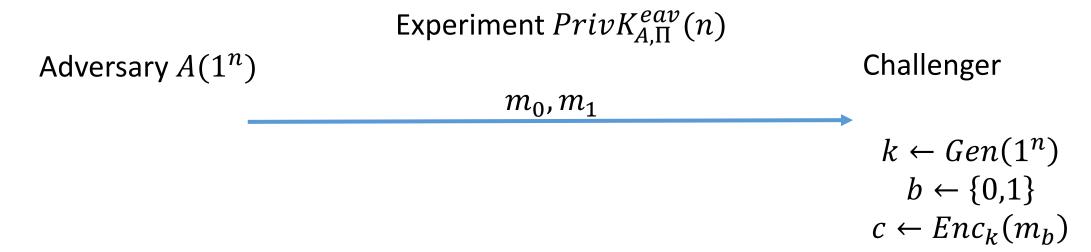
 $m \in \{0,1\}^*$, it holds that $Dec_k(Enc_k(m)) = m$.

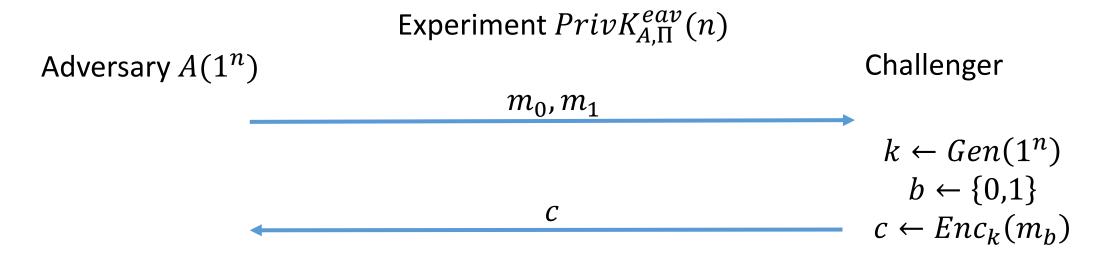
Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter. the honest Pourties Challenger

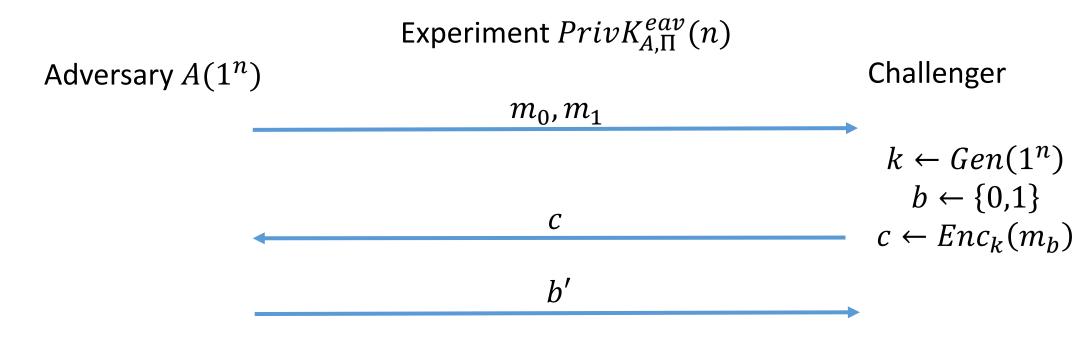
Adversary $A(1^n)$

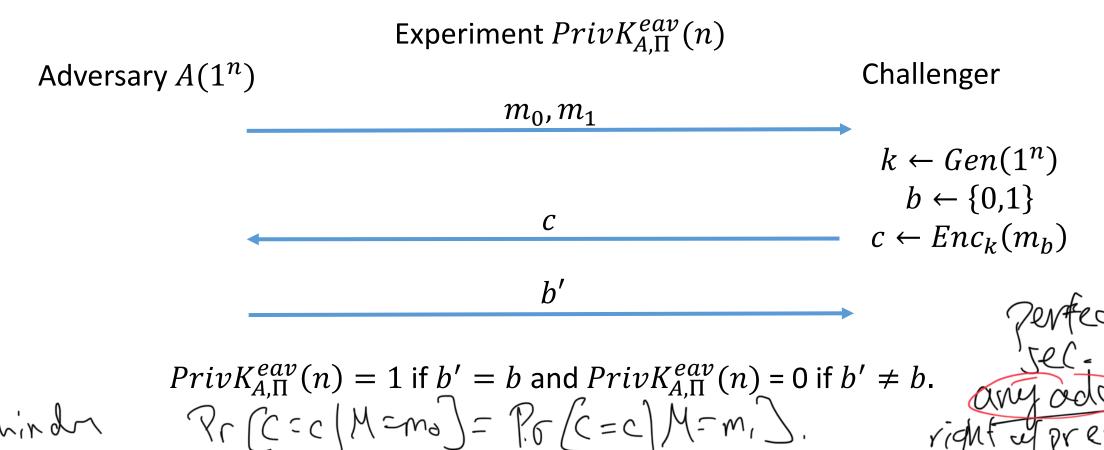
Experiment $PrivK_{A,\Pi}^{eav}(n)$











Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

The eavesdropping indistinguishability experiment $PrivK^{eav}_{A,\Pi}(n)$:

- 1. The adversary A is given input 1^n , and outputs a pair of messages m_0 , m_1 of the same length.
- 2. A key k is generated by running $Gen(1^n)$, and a random bit $b \leftarrow \{0,1\}$ is chosen. A challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
- 3. Adversary A outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b'=b, and 0 otherwise. If $PrivK^{eav}_{A,\Pi}(n)=1$, we say that A succeeded.

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$\Pr\left[PrivK^{eav}_{A,\Pi}(n) = 1\right] \le \frac{1}{2} + negl(n),$$

Where the prob. Is taken over the random coins used by A, as well as the random coins used in the experiment.

Coming up with the right definition

Third Attempt:

"An encryption scheme is secure if no adversary learns meaningful information about the plaintext after seeing the ciphertext"

How do you formalize learns meaningful information?

Semantic Security

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ is semantically secure in the presence of an eavesdropper if for every ppt adversary A there exists a ppt algorithm A' such that for all efficiently sampleable distributions $X = (X_1, ...,)$ and all poly time computable functions f, h, there exists a negligible function negl such that

$$|\Pr[A(1^n, Enc_k(m), h(m)) = f(m)] - \Pr[A'(1^n, h(m)) = f(m)]| \le negl(n),$$

where m is chosen according to distribution X_n , and the probabilities are taken over choice of m and the key k, and any random coins used by A, A', and the encryption process.

Semantic Security

- The full definition of semantic security is even more general.
- Consider arbitrary distributions over plaintext messages and arbitrary external information about the plaintext.

Equivalence of Definitions

Theorem: A private-key encryption scheme has indistinguishable encryptions in the presence of an eavesdropper if and only if it is semantically secure in the presence of an eavesdropper.

For us: we can work w/ the game based definition

Pseudorandom Generator

Functionality

- Deterministic algorithm G
- Takes as input a short random seed s
- Ouputs a long string G(s)

Security

- No efficient algorithm can "distinguish" G(s) from a truly random string r.
- i.e. passes all "statistical tests."

• Intuition:

- Stretches a small amount of true randomness to a larger amount of pseudorandomness.
- Why is this useful?
 - We will see that pseudorandom generators will allow us to beat the Shannon bound of $|K| \ge |M|$.
 - I.e. we will build a computationally secure encryption scheme with |K| < |M|

Pseudorandom Generators

Definition: Let $\ell(\cdot)$ be a polynomial and let G be a deterministic poly-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For all ppt distinguishers D, there exists a negligible function negl such that:

$$\left|\Pr[D(r)=1] - \Pr[D(G(s))=1]\right| \le negl(n),$$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.