Cryptography

Lecture 22

Announcements

• HW8 due on 5/3

Agenda

- Last time:
 - Diffie-Hellman Key Exchange
 - Public Key Encryption
 - ElGamal, Textbook RSA Encryption (11.5)
- This time:
 - Padded RSA Encryption
 - Digital Signatures Definitions (12.2-12.3)
 - RSA Signatures (12.4)

Padded RSA

CONSTRUCTION 11.29

Let GenRSA be as before, and let ℓ be a function with $\ell(n) \leq 2n - 4$ for all n. Define a public-key encryption scheme as follows:

- Gen: on input 1ⁿ, run GenRSA(1ⁿ) to obtain (N, e, d). Output the public key pk = (N, e), and the private key sk = (N, d).
- Enc: on input a public key $pk = \langle N, e \rangle$ and a message $m \in \{0, 1\}^{\|N\| \ell(n) 2}$, choose a random string $r \leftarrow \{0, 1\}^{\ell(n)}$ and interpret $\hat{m} := 1 \|r\| m$ as an element of \mathbb{Z}_N^* . Output the ciphertext

$$c := [\hat{m}^e \mod N].$$

• Dec: on input a private key $sk = \langle N, d \rangle$ and a ciphertext $c \in \mathbb{Z}_N^*$, compute

 $\hat{m} := [c^d \bmod N],$

and output the $||N|| - \ell(n) - 2$ least-significant bits of \hat{m} .

The padded RSA encryption scheme.

Digital Signatures Definition

A digital signature scheme consists of three ppt algorithms (Gen, Sign, Vrfy) such that:

- 1. The key-generation algorithm *Gen* takes as input a security parameter 1^n and outputs a pair of keys (pk, sk). We assume that pk, sk each have length at least n, and that n can be determined from pk or sk.
- 2. The signing algorithm Sign takes as input a private key sk and a message m from some message space (that may depend on pk). It outputs a signature σ , and we write this as $\sigma \leftarrow Sign_{sk}(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message m, and a signature σ . It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as $b \coloneqq Vrfy_{pk}(m, \sigma)$.

Correctness: It is required that except with negligible probability over (pk, sk) output by $Gen(1^n)$, it holds that $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$ for every message m.

Digital Signatures Definition: Security

Experiment $SigForge_{A,\Pi}(n)$:

- 1. $Gen(1^n)$ is run to obtain keys (pk, sk).
- 2. Adversary A is given pk and access to an oracle $Sign_{sk}(\cdot)$. The adversary then outputs (m, σ) . Let Q denote the set of all queries that A asked to its oracle.
- *3.* A succeeds if and only if

1.
$$Vrfy_{pk}(m,\sigma) = 1$$

2. $m \notin Q$.

In this case the output of the experiment is defined to be 1.

Definition: A signature scheme $\Pi = (Gen, Sign, Vrfy)$ is existentially unforgeable under an adaptive chosen-message attack, if for all ppt adversaries A, there is a negligible function neg such that:

$$\Pr[SigForge_{A,Pi}(n) = 1] \le neg(n).$$

RSA Signatures

CONSTRUCTION 12.5

Let GenRSA be as in the text. Define a signature scheme as follows:

- Gen: on input 1ⁿ run GenRSA(1ⁿ) to obtain (N, e, d). The public key is (N, e) and the private key is (N, d).
- Sign: on input a private key $sk = \langle N, d \rangle$ and a message $m \in \mathbb{Z}_N^*$, compute the signature

$$\sigma := [m^d \bmod N].$$

 Vrfy: on input a public key pk = ⟨N, e⟩, a message m ∈ Z_N^{*}, and a signature σ ∈ Z_N^{*}, output 1 if and only if

$$m \stackrel{?}{=} [\sigma^e \bmod N].$$

The plain RSA signature scheme.

Attacks

No message attack:

Choose $s \in Z_N^*$, compute s^e . Ouput $(m = s^e, \sigma = s)$ as the forgery.

Attacks

Forging a signature on an arbitrary message:

To forge a signature on message m, choose arbitrary $m_1, m_2 \neq 1$ such that $m = m_1 \cdot m_2$. Query oracle for $(m_1, \sigma_1), (m_2, \sigma_2)$. Output (m, σ) , where $\sigma = \sigma_1 \cdot \sigma_2$.

RSA-FDH

CONSTRUCTION 12.6

Let GenRSA be as in the previous sections, and construct a signature scheme as follows:

- Gen: on input 1ⁿ, run GenRSA(1ⁿ) to compute (N, e, d). The public key is (N, e) and the private key is (N, d).
 As part of key generation, a function H : {0, 1}* → Z_N* is specified, but we leave this implicit.
- Sign: on input a private key $\langle N, d \rangle$ and a message $m \in \{0, 1\}^*$, compute

 $\sigma := [H(m)^d \mod N].$

• Vrfy: on input a public key $\langle N, e \rangle$, a message m, and a signature σ , output 1 if and only if $\sigma^e \stackrel{?}{=} H(m) \mod N$.

The RSA-FDH signature scheme.

Random Oracles

- Assume certain hash functions behave exactly like a random oracle.
- The "oracle" is a box that takes a binary string as input and returns a binary string as output.
- The internal workings of the box are unknown.
- All parties (honest parties and adversary) have access to the box.
- The box is consistent.
- Oracle implements a random function by choosing values of H(x) "on the fly."

Principles of RO Model

- 1. If x has not been queried to H, then the value of H(x) is uniform.
- 2. If A queries x to H, the reduction can see this query and learn x.
- 3. The reduction can set the value of H(x) to a value of its choice, as long as this value is correctly distributed, i.e., uniform.

Security of RSA-FDH

Theorem: If the RSA problem is hard relative to *GenRSA* and *H* is modeled as a random oracle, then the construction above is secure.

PKCS #1 v2.1

- Uses an instantiation of RSA-FDH for signing.
- SHA-1 should not be used "off-the-shelf" as an instantiation of H because output length is too small and so practical short-message attacks apply.
- In PKCS #1 v2.1, *H* is constructed via repeated application of an underlying cryptographic hash function.