ENEE/CMSC/MATH 456: Cryptography Chinese Remainder Theorem Class Exercise 4/13/22

1. Use the method described in class to find the unique number x modulo 35 such that:

$$
\begin{aligned}
& x \bmod 7=4 \\
& x \bmod 5=2
\end{aligned}
$$

We first look for the elements $x _1, x _2$ modulo 35 that map to the basis elements $(1,0)$ and $(0,1)$. Thus $x _1$ is such that $x _1 \bmod 7=1$ and $x _1 \bmod 5=0$. $x _2$ is such that $x _2 \bmod 7=0$ and $x _2 \bmod 5=1$.
To find $x _1, x _2$, we find X, Y such that $7 X+5 Y=1$. Then $x _1=5 Y$ and $x _2=7 X$. Note that $7^{*}(-2)+5(3)=1$.
So x_1 = 15 and $x _2=-14$.
Thus $(4,2)=4^{*}(1,0)+2 *(0,1)->4^{*} x _1+2^{*} x _2=4^{*} 15+2(-14)=60-28=32$.
Final answer: $x=32$.
2. Use the method described in class to find the unique number x modulo 56 such that:

$$
\begin{aligned}
& x \bmod 7=5 \\
& x \bmod 8=3
\end{aligned}
$$

We first look for the elements $x _1, x _2$ modulo 56 that map to the basis elements $(1,0)$ and $(0,1)$. Thus $x _1$ is such that $x _1 \bmod 7=1$ and $x _1 \bmod 8=0$.
$x _2$ is such that $x _2 \bmod 7=0$ and $x _2 \bmod 8=1$.
To find $x _1, x _2$, we find X, Y such that $7 X+8 Y=1$. Then $x _1=8 Y$ and $x_{-} 2=7 X$.
Note that $7^{*}(-1)+8(1)=1$.
So $x _1=8$ and $x _2=-7$.
Thus $(5,3)=5^{*}(1,0)+3 *(0,1)->5^{*} x _1+3^{*} x _2=5 * 8+3(-7)=40-21=19$.
Final answer: $x=19$.

