Cryptography

Lecture 20

Announcements

- HW 7 due $4 / 26$

Agenda

- Last time:
- Number theory
- Hard problems (Factoring, RSA)
- This time:
- More number theory (cyclic groups)
- Hard problems (Discrete log and Diffie-Hellman problems)
- Elliptic Curve groups

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$
\langle g\rangle=\left\{g^{0}, g^{1}, \ldots, g^{m-1}\right\}
$$

$\langle g\rangle$ always forms a cyclic subgroup of G. However, it is possible that there are repeats in the above list.
Thus $\langle g\rangle$ may be a subgroup of order smaller than m.

If $\langle g\rangle=G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider $Z^{*}{ }_{13}$:

2 is a generator of $Z^{*}{ }_{13}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 3$
2^{5}	6
2^{6}	12
2^{7}	$24 \rightarrow 11$
2^{8}	$22 \rightarrow 9$
2^{9}	$18 \rightarrow 5$
2^{10}	10
2^{11}	$20 \rightarrow 7$
2^{12}	$14 \rightarrow 1$

3 is not a generator of $Z^{*}{ }_{13}$:

3^{0}	1
3^{1}	3
3^{2}	9
3^{3}	$27 \rightarrow 1$
3^{4}	3
3^{5}	9
3^{6}	$27 \rightarrow 1$
3^{7}	3
3^{8}	9
3^{9}	$27 \rightarrow 1$
3^{10}	3
3^{11}	9
3^{12}	$27 \rightarrow 1$

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^{i}=1$.

Ex: Consider Z_{13}^{*}. The order of 2 is 12 . The order of 3 is 3 .

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^{x}=$ $g^{x \bmod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^{x}=g^{y}$ iff $x \equiv y \bmod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^{m}=1=g^{0}$.
- By Propesition 2, we have that $0 \equiv m \bmod i$
- By definition of modulus, this means that $i \mid m$.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?
Theorem: If p is prime then $Z^{*}{ }_{p}$ is a cyclic group of order $p-1$.

Prime-Order Cyclic Groups

Consider $Z^{*}{ }_{p}$, where p is a strong prime.

- Strong prime: $p=2 q+1$, where q is also prime.
- Recall that $Z^{*}{ }_{p}$ is a cyclic group of order $p-$ $1=2 q$.

The subgroup of quadratic residues in $Z^{*}{ }_{p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^{*}
11°
Note that 11 is a strong prime, since $11=2 \cdot 5+1$. $g=2$ is a generator of $Z^{*}{ }_{11}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 5$
2^{5}	10
2^{6}	$20 \rightarrow 9$
2^{7}	$18 \rightarrow 7$
2^{8}	$14 \rightarrow 3$
2^{9}	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^{*}{ }_{p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2}=$ q.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers mod $p-2$ gives an even number $\bmod p-1$, since for prime $p>3, p-1$ is even.)
- Cyclic -any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^{2}.

The Discrete Logarithm Problem

The discrete-log experiment $D \log _{A, G}(n)$

1. Run $\boldsymbol{G}\left(1^{n}\right)$ to obtain (G, q, g) where G is a cyclic group of order q (with $|\mid q \|=n$) and g is a generator of G.
2. Choose a uniform $h \in G$
3. A is given G, q, g, h and outputs $x \in Z_{q}$
4. The output of the experiment is defined to be 1 if $g^{x}=h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to \boldsymbol{G} if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[D \log _{A, \boldsymbol{G}}(n)=1\right] \leq \operatorname{neg}(n) .
$$

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_{1}=g^{x_{1}}, h_{2}=g^{x_{2}}$, compute $g^{x_{1} \cdot x_{2}}$.

The DDH Problem

We say that the DDH problem is hard relative to \boldsymbol{G} if for all ppt algorithms A, there exists a negligible
function neg such that

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right] \\
& -\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right] \mid \leq \operatorname{neg}(n) .
\end{aligned}
$$

Relative Hardness of the Assumptions

Breaking DLog \rightarrow Breaking CDH \rightarrow Breaking DDH

DDH Assumption \rightarrow CDH Assumption \rightarrow DLog Assumption

