Cryptography

Lecture 19

Announcements

- HW7 due on Monday, 4/24

Agenda

- More Number Theory!
- Hard Problems

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, \ldots, N-1\}$ have multiplicative inverses mod N ?
$-a$ such that $\operatorname{gcd}(a, N)=1$ has multiplicative inverse by Extended Euclidean Algorithm.
$-a$ such that $\operatorname{gcd}(a, N)>1$ does not, since $\operatorname{gcd}(a, N)$ is the smallest positive integer that can be written in the form $X a+Y N$ for integer X, Y.
- Define $Z_{N}^{*}:=\{a \in\{1, \ldots, N-1\} \mid \operatorname{gcd}(a, N)=1\}$.
- Z_{N}^{*} is an abelian, multiplicative group.
- Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of Z_{N}^{*} ?
- This has a name. The order of Z_{N}^{*} is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N=p \cdot q$, where p, q are distinct primes.
$-\phi(N)=N-p-q+1=p \cdot q-p-\mathrm{q}+1=$ $(p-1)(q-1)$.
-Why?

Another Special Case of Generalized Theorem

Corollary of generalized theorem:
For a such that $\operatorname{gcd}(a, N)=1$:

$$
a^{\phi(N)} \equiv 1 \bmod N .
$$

Another Useful Theorem

Theorem: Let G be a finite group with $m=|G|>$ 1. Then for any $g \in G$ and any integer x, we have

$$
g^{x}=g^{x \bmod m} .
$$

Proof: We write $x=a \cdot m+b$, where a is an integer and $b \equiv x \bmod m$.

- $g^{x}=g^{a \cdot m+b}=\left(g^{m}\right)^{a} \cdot g^{b}$
- By "generalized theorem" we have that

$$
\left(g^{m}\right)^{a} \cdot g^{b}=1^{a} \cdot g^{b}=g^{b}=g^{x \bmod m} .
$$

Background for RSA

Recall the fact that

$$
a^{m} \equiv a^{m \bmod \phi(N)} \bmod N
$$

For $e \in Z_{\phi(N)}^{*}$, let $f_{e}: Z_{N}^{*} \rightarrow Z_{N}^{*}$ be defined as $f_{e}(x):=x^{e} \bmod N$.
Theorem: $f_{e}(x)$ is a permutation.
Proof: To prove the theorem, we show that $f_{e}(x)$ is invertible.
Let d be the multiplicative inverse of $e \bmod \phi(N)$.
Then for $y \in Z_{N}^{*}, f_{d}(y):=y^{d} \bmod N$ is the inverse of f_{e}.
To see this, we show that $f_{d}\left(f_{e}(x)\right)=x$.
$f_{d}\left(f_{e}(x)\right)=\left(x^{e}\right)^{d} \bmod N=x^{e \cdot d} \bmod N=x^{e \cdot d \bmod \phi(N)} \bmod N=x^{1} \bmod N=$ $x \bmod N$.

Note: Given d, it is easy to compute the inverse of f_{e} However, we saw in the homework that given only e, N, it is hard to find d, since finding d implies that we can factor $N=p \cdot q$.
This will be important for cryptographic applications.

Toolbox for Cryptographic Multiplicative Groups

$\left.\begin{array}{|c|c|}\hline \text { Can be done efficiently } & \text { No efficient algorithm believed to exist } \\ \hline \text { Modular multiplication } & \text { Factoring } \\ \hline \begin{array}{c}\text { Finding multiplicative inverses (extended } \\ \text { Euclidean algorithm) }\end{array} & \text { RSA problem }\end{array}\right]$

We have seen the efficient algorithms in the left column. We will now start talking about the "hard problems" in the right column.

The Factoring Assumption

The factoring experiment Factor $_{A, G e n}(n): \downarrow^{2 \times 7}$

1. Run $\operatorname{Gen}\left(1^{n}\right)$ to obtain (N, p, q), where p, q are random primes of length n bits and $N=\bar{p} \cdot q$.
2. A is given N, and outputs $p^{\prime}, q^{\prime}>1$.
3. The output of the experiment is defined to be 1 if p^{\prime}. $q^{\prime}=N$, and 0 otherwise.

Definition: Factoring is hard relative to Gen if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[\operatorname{Factor}_{A, G e n}(n)=1\right] \leq n e g(n) .
$$

How does Gen work?

1. Pick random n-bit numbers p, q
2. Check if they are prime
3. If yes, return (N, p, q). If not, go back to step 1 .

Why does this work?

- Prime number theorem. Primes are dense!
- A random n-bit number is a prime with non-negligible probability.
- Bertrand's postulate: For any $n>1$, the fraction of n-bit integers that are prime is at least $1 / 3 n$.
- Can efficiently test whether a number is prime or composite:
- If p is prime, then the Miller-Rabintest always outputs "prime." If p is composite, the algorithm outputs "composite" except with negligible probability.

Miller-Rabin Primality Test

```
ALGORITHM 8.44
The Miller-Rabin primality test
Input: Integer N>2 and parameter 1 }\mp@subsup{}{}{t
Output: A decision as to whether N is prime or composite
if N is even, return "composite"
if N is a perfect power, return "composite"
compute r\geq1 and u}\mathrm{ odd such that N-1= 2ru
for j=1 to t:
    a\leftarrow{1,\ldots,N-1}
    if \mp@subsup{a}{}{u}\not=\pm1\operatorname{mod}N\mathrm{ and }\mp@subsup{a}{}{\mp@subsup{2}{}{i}u}\not=-1\operatorname{mod}N\mathrm{ for }i\in{1,\ldots,r-1}
        return "composite"
return "prime"
```

Why does it work?
First, note that $a^{2^{i} u}=\sqrt{a^{2^{i+1} u}}$, and that if p is prime then $\sqrt{1} \bmod p \equiv \pm 1$.

- If N is prime: By Fermat's Little Theorem, $a^{N-1} \equiv a^{2^{r} u} \equiv 1 \bmod N$.
- Case 1: One of $a^{2^{i} u} \equiv-1 \bmod N$.
- Case 2: None of $a^{2^{i} u} \equiv-1 \bmod N$. Then by the facts above, all of $a^{2^{i} u} \equiv$ $1 \bmod N$. In particular, $a^{2 u} \equiv 1 \bmod N$. So by facts, $a^{u} \equiv \sqrt{a^{2 u}} \equiv$ $\pm 1 \bmod N$.
- If N is composite: At least half of $a \in Z_{N}^{*}$ will satisfy $a^{u} \neq \pm 1 \bmod N$ and $a^{2^{i} u} \neq-1 \bmod N$ for $i \in\{1, \ldots, r-1\}$.

The RSA Assumption

The RSA experiment $R S A-i n v_{A, G e n}(n)$:

1. Run $\operatorname{Gen}\left(1^{n}\right)$ to obtain $\left.(N) e, d\right)$, where $\operatorname{gcd}(e, \phi(N))=$ 1 and $(d \equiv 1 \bmod \phi(N)$.
2. Choose a uniform $y \in Z^{*}{ }_{N} . \quad x \in \mathbb{R}_{N}^{*}$ setling $y=x^{l} \bmod N$
3. A is given (N, e, y), and outputs $x \in Z^{*}{ }_{N}$.
4. The output of the experiment is defined to be 1 if $x^{e}=$ $y \bmod N$, and 0 otherwise.

Definition: The RSA problem is hard relative to Gen if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[R S A-\operatorname{inv} v_{A, G e n}(n)=1\right] \leq \operatorname{neg}(n)
$$

Relationship between RSA and

Known:

- If an attacker can break factoring, then an attacker can break RSA.
- Given p, q such that $p \cdot q=N$, can find $\phi(N)$ and d, the multiplicative inverse of $e \bmod \phi(N)$.
- If an attacker can find $\phi(N)$, can break factoring.
- If an attacker can find d such that $e \cdot d \equiv 1 \bmod \phi(N)$, can break factoring.

Not Known:

- Can every efficient attacker who breaks RSA also break factoring?

Due to the above, we have that the RSA assumption is a stronger assumption than the factoring assumption.

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$
\langle g\rangle=\left\{g^{0}, g^{1}, \ldots, g^{m-1}\right\}
$$

$\langle g\rangle$ always forms a cyclic subgroup of G. However, it is possible that there are repeats in the above list.
Thus $\langle g\rangle$ may be a subgroup of order smaller than m.

If $\langle g\rangle=G$, then we say that G is a cyclic group and that g is a generator of G.

