
Cryptography

Lecture 18



Announcements

• HW7 due 4/24/23
nstructor OH on Friday, 4/15



Agenda

• More Number Theory!



Chinese Remainder Theorem



Going from 𝑎, 𝑏 ∈ 𝑍𝑝 × 𝑍𝑞
to 𝑥 ∈ 𝑍𝑁

Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that
𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Recall since gcd 𝑝, 𝑞 = 1 we can write
𝑋𝑝 + 𝑌𝑞 = 1

Note that 
𝑋𝑝 ≡ 0 𝑚𝑜𝑑 𝑝
𝑋𝑝 ≡ 1 𝑚𝑜𝑑 𝑞

Whereas
𝑌𝑞 ≡ 1 𝑚𝑜𝑑 𝑝
𝑌𝑞 ≡ 0 𝑚𝑜𝑑 𝑝



Going from 𝑎, 𝑏 ∈ 𝑍𝑝 × 𝑍𝑞
to 𝑥 ∈ 𝑍𝑁

Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that
𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Claim:
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Therefore, 𝑥 ≡ 𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 𝑚𝑜𝑑 𝑁



Modular Exponentiation



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;



Modular Exponentiation

Is the following algorithm efficient (i.e. poly-time)?

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 1 to 𝑚

Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑎 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

No—the run time is 𝑂(𝑚).  𝑚 can be on the order of 𝑁.  
This means that the runtime is on the order of 𝑂(𝑁), 
while to be efficient it must be on the order of 𝑂(log𝑁) .



Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where 𝑚 =
𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚.

Set 𝑠 ≔ 𝑎
Set 𝑡𝑒𝑚𝑝 ≔ 1
For 𝑖 = 0 to 𝑛 − 1

If 𝑚𝑖 = 1
Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁

Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁
return 𝑡𝑒𝑚𝑝;

This is clearly efficient since the loop runs for 𝑛 iterations, where 𝑛 =
log2𝑚.



Modular Exponentiation

Why does it work?

𝑚 = 

𝑖=0

𝑛−1

𝑚𝑖 ⋅ 2
𝑖

Consider 𝑎𝑚 = 𝑎σ𝑖=0
𝑛−1𝑚𝑖⋅2

𝑖
= ς𝑖=0

𝑛−1𝑎𝑚𝑖⋅2
𝑖
.

In the efficient algorithm:

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2 ).

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value.

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step.



Getting Back to 

Group operation:  
multiplication modulo .
Order of a finite group is the number of 
elements in the group.
Order of is 



Fermat’s Little Theorem

Theorem:  For prime , integer :
.

Corollary:  For prime and such that :



Generalized Theorem

Theorem:  Let be a finite group with , 
the order of the group.  Then for any element 

.

Corollary of Fermat’s Little Theorem is a special 
case of the above when is the multiplicative 
group and is prime.



Multiplicative Groups Mod N

• What about multiplicative groups modulo , where
is composite?

• Which numbers have multiplicative 
inverses ?
– such that has multiplicative inverse by 

Extended Euclidean Algorithm.
– such that does not, since is the 

smallest positive integer that can be written in the form 
for integer 

• Define . 
• is an abelian, multiplicative group.

– Why does closure hold?



Order of Multiplicative Groups Mod N

• What is the order of ?
• This has a name.  The order of is the

quantity , where is known as the Euler 
totient function or Euler phi function.

• Assume , where are distinct 
primes.
–

– Why?



Order of Multiplicative Groups Mod N

General Formula:

Theorem:  Let where the are 
distinct primes and .  Then



Another Special Case of Generalized 
Theorem

Corollary of generalized theorem:
For such that :



Another Useful Theorem

Theorem:  Let be a finite group with 
Then for any and any integer , we have

Proof:  We write , where is an 
integer and 
•
• By “generalized theorem” we have that 



An Example:

Compute by hand.



Toolbox for Cryptographic 
Multiplicative Groups

Can be done efficiently No efficient algorithm believed to exist

Modular multiplication Factoring 

Finding multiplicative inverses (extended 
Euclidean algorithm)

RSA problem

Modular exponentiation (via repeated 
squaring)

Discrete logarithm problem

Diffie Hellman problems

We have seen the efficient algorithms in the left column.
We will now start talking about the “hard problems” in the right 
column.




