Cryptography

Lecture 13

Announcements

- HW5 due 3/9
- Midterm Upcoming on 3/16
 - Review sheet posted on course webpage and on Canvas
 - Solutions and Cheat Sheet posted soon on Canvas
 - Extra practice for midterm posted on Canvas

Agenda

- This time:
 - Domain Extension for CRHF
 - (Merkle-Damgard) (K/L 5.2)

Collision Resistant Hashing

Collision Resistant Hashing

Definition: A hash function (with output length ℓ) is a pair of ppt algorithms (*Gen*, *H*) satisfying the following:

- *Gen* takes as input a security parameter 1^n and outputs a key *s*. We assume that 1^n is implicit in s.
- *H* takes as input a key *s* and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{\ell(n)}$.

If H^s is defined only for inputs $x \in \{0,1\}^{\ell'(n)}$ and $\ell'(n) > \ell(n)$, then we say that (Gen, H) is a fixed-length hash function for inputs of length ℓ' . In this case, we also call H a compression function.

The collision-finding experiment

$Hashcoll_{A,\Pi}(n)$:

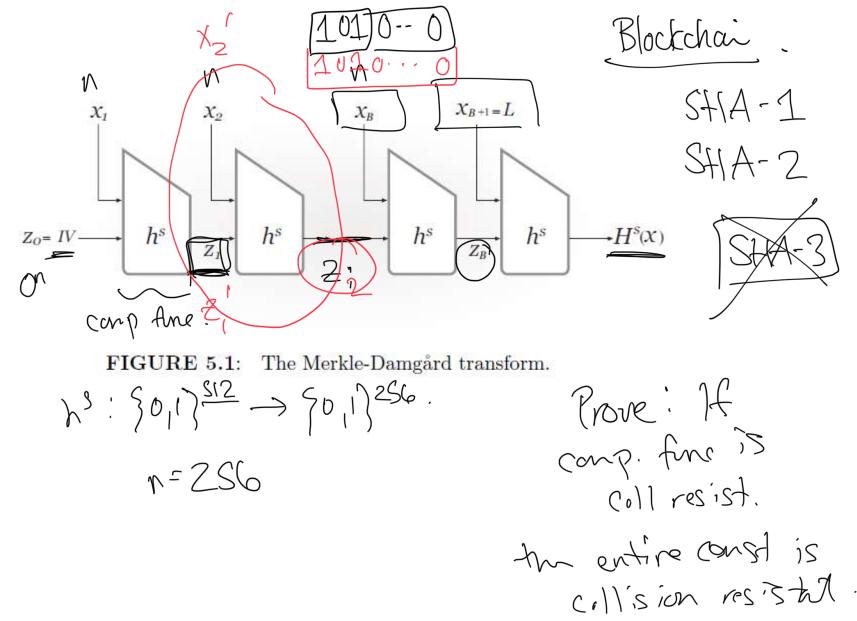
- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary A is given s and outputs x, x'. (If Π is a fixed-length hash function for inputs of length $\ell'(n)$, then we require $x, x' \in \{0,1\}^{\ell'(n)}$.)
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision.

Security Definition

Definition: A hash function $\Pi = (Gen, H)$ is collision resistant if for all ppt adversaries Athere is a negligible function neg such that $\Pr[Hashcoll_{A,\Pi}(n) = 1] \leq neg(n).$

Domain Extension

The Merkle-Damgard Transform



The Merkle-Damgard Transform

Let (Gen, h) be a fixed-length hash function for inputs of length 2n and with output length n. Construct hash function (Gen, H) as follows:

- Gen: remains unchanged
- *H*: on input a key *s* and a string $x \in \{0,1\}^*$ of length $L < 2^n$, do the following:
 - 1. Set $B \coloneqq \left[\frac{L}{n}\right]$ (i.e., the number of blocks in x). Pad x with zeros so its length is a multiple of n. Parse the padded result as the sequence of n-bit blocks x_1, \ldots, x_B . Set $x_{B+1} \coloneqq L$, where L is encoded as an n-bit string.
 - 2. Set $z_0 \coloneqq 0^n$. (This is also called the IV.)
 - 3. For i = 1, ..., B + 1, compute $z_i \coloneqq h^s(z_{i-1} || x_i)$.
 - 4. Output z_{B+1} .

Security of Merkle-Damgard

Theorem: If (Gen, h) is collision resistant, then so is (Gen, H).