An Introduction to Lattice-Based Cryptography

Dana Dachman-Soled University of Maryland danadach@umd.edu

Traditional Crypto Assumptions

- Factoring: Given N = pq, find p, q
 RSA Given N = pq, e, x^e mod N, find x.
- Discrete Log: Given g^x mod p, find x.
 Diffie-Hellman Assumptions (g^x, g^y, g^{xy}), (g^x, g^y, g^z)

Are They Secure?

- Algorithmic Advances:
 - Factoring: Best algorithm time $2^{\tilde{O}(n^{\frac{1}{3}})}$ to factor *n*-bit number.
 - Discrete log: Best algorithm $2^{\tilde{O}(n^{\frac{1}{3}})}$ for groups Z_p^* , where p is n bits.
 - [Adrian et al. 2015] With preprocessing could possibly be feasible for nation-states and n = 1024.
 - Quasipolynomial time algorithms for small characteristic fields. Not known to apply in practice.
- Quantum Computers:
 - Shor's algorithm solves both factoring and discrete log in quantum polynomial time ($\tilde{O}(n^2)$).

Are They Secure?

"For those partners and vendors that have not yet made the transition to Suite B algorithms (ECC), we recommend not making a significant expenditure to do so at this point but instead to **prepare for the upcoming quantum resistant algorithm transition**.... Unfortunately, the growth of elliptic curve use has bumped up against the fact of continued progress in the research on quantum computing, necessitating a re-evaluation of our cryptographic strategy. "—NSA Statement, August 2015

NIST Kicks Off Effort to Defend Encrypted Data from QuantumComputer ThreatApril 28, 2016Google Dabbles in Post-QuantumCryptography

By Richard Adhikari Jul 12, 2016 2:06 PM PT

🗟 Print 🖾 Email

Post-Quantum Approach

- New set of assumptions based on finding short vectors in lattices.
- Believed to be hard for quantum computers.
- Evidence of hardness "worst case to average case reduction".
- Versatile: Can essentially construct all cryptosystems out of these assumptions.

My Research

- New efficient cryptosystems from post-quantum and FHE assumptions [1], [7]
- Concrete hardness of post-quantum cryptosystems (with or without side information) [2], [3], [4], [5], [6], [8], [9]
- Concrete hardness of FHE (with or without side information) [10]

[1] Constant-Round Group Key-Exchange from the Ring-LWE Assumption. D. Apon, D. Dachman-Soled, H. Gong, J. Katz. PQCrypto 2019.

[2] LWE with Side Information: Attacks and Concrete Security Estimation. D. Dachman-Soled, L. Ducas, H. Gong, M. Rossi, CRYPTO 2020.

[3 Security of NewHope under Partial Key Exposure. D. Dachman-Soled, H. Gong, M. Kulkarni, A. Shahverdi. Research in Mathematics and Public Policy, 2020

[4] (In)Security of Ring-LWE Under Partial Key Exposure. D. Dachman-Soled, H. Gong, M. Kulkarni, A. Shahverdi. Journal of Mathematical Cryptology, 2020.

[5] Towards a Ring Analogue of the Leftover Hash Lemma. D. Dachman-Soled, H. Gong, M. Kulkarni, A. Shahverdi. Journal of Mathematical Cryptology, 2020.

[6] BKW Meets Fourier: New Algorithms for LPN with Sparse Parities. D. Dachman-Soled, H. Gong, H. Kippen, A. Shahverdi. TCC 2021

[7] Compressed Oblivious Encoding for Homomorphically Encrypted Search. S. G. Choi, D. Dachman-Soled, D. Gordon, L. Liu, A. Yerukhimovich. CCS 2021

[8] When Frodo Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer. M. Fahr Jr., H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-Soled, D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich, D. Apon. CCS 2022, RWC 2023

[9] Refined Security Estimation for LWE with Hints via a Geometric Approach. D Dachman-Soled, H Gong, T Hanson, H Kippen, Cryptology ePrint Archive

[10] Concrete Security Loss in IND-CPA^D Attacks on Approximate FHE (In preparation).

Math Prelim

Matrix Multiplication

$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	$v_{1,1}$	$v_{1,2}$	$v_{1,3}$
$m_{2,1}$	$m_{2,2}$	$m_{2,3}$ >	$_{X} v_{2,1}$	$v_{2,2}$	$v_{2,3}$:
$m_{3,1}$	$m_{3,2}$	$m_{3,3}$	$v_{3,1}$	$v_{3,2}$	$v_{3,3}$

For $j \in \{1,2,3\}$, *j*-th column of the output is computed as : $\sum_{i=1}^{3} v_{i,j} \cdot m_{2,i}$ $m_{3,i}$

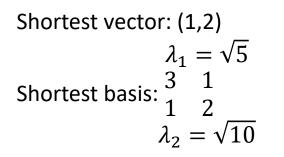
Lattices

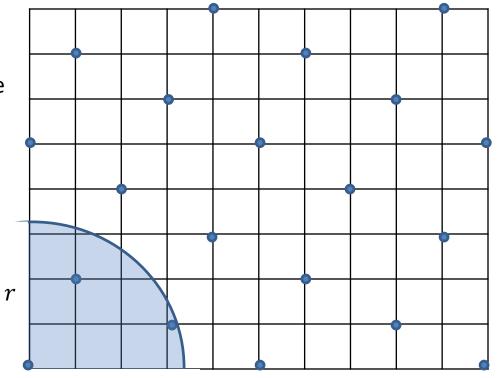
An *n*-dimensional lattice L is an additive discrete subgroup of \mathbb{R}^n . A basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ defines a lattice L(\mathbf{B}) in the following way:

 $L(\mathbf{B}) = \{ \mathbf{v} \in \mathbb{R}^n \text{ s.t. } \mathbf{v} = \mathbf{B}\mathbf{z} \text{ for some } \mathbf{z} \in \mathbb{Z}^n \}.$

"integer linear combinations of the basis vectors"

i-th successive minima $\lambda_i(L(B))$: The smallest radius r such that there are i linearly independent vectors $\{v_1, \dots, v_i\}$ of length at most r.



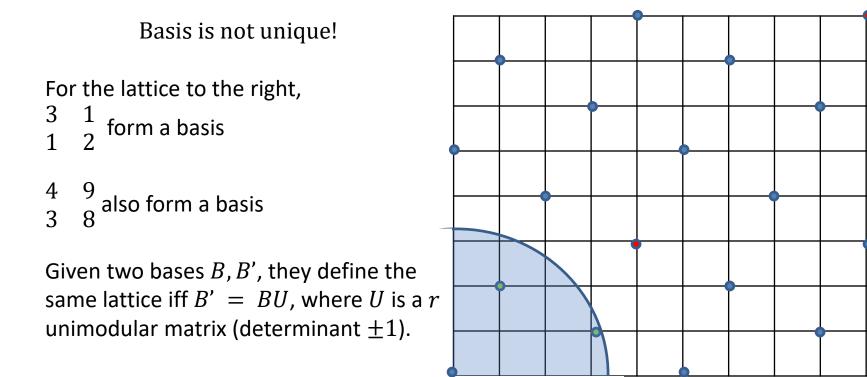


Lattices

An *n*-dimensional lattice L is an additive discrete subgroup of \mathbb{R}^n . A basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ defines a lattice L(\mathbf{B}) in the following way:

 $L(\mathbf{B}) = \{ \mathbf{v} \in \mathbb{R}^n \text{ s.t. } \mathbf{v} = \mathbf{B}\mathbf{z} \text{ for some } \mathbf{z} \in \mathbb{Z}^n \}.$

"integer linear combinations of the basis vectors"



Hard Lattice Problems

- Are all parameterized by "approximation factor" $\gamma > 1$.
- Shortest Vector Problem (SVP): Given a basis B, find a non-zero vector $v \in L(B)$ whose length is at most $\gamma \cdot \lambda_1(L(B))$.
- Shortest Independent Vector Problem (SIVP): Given a basis B, find a linearly independent set $\{v_1, \dots, v_n\}$ such that all vectors have length at most $\gamma \cdot \lambda_n(L(B))$.
- Gap Shortest vector problem (GapSVP): Given a basis
 B, and a radius r > 0
 - Return YES if $\lambda_1(L(B)) \leq r$
 - Return NO if $\lambda_1(L(B)) > \gamma \cdot r$.

Believed hard even for a quantum computer!

Cryptographic Hard Problems

The SIS Problem



Public $n \times m$ matrix A, with entries chosen at random over Z_p

Dimension *n*

```
n \ll m
```

Problem: Given A, find $z \in \{0,1\}^m$ (or sufficiently "short" z)

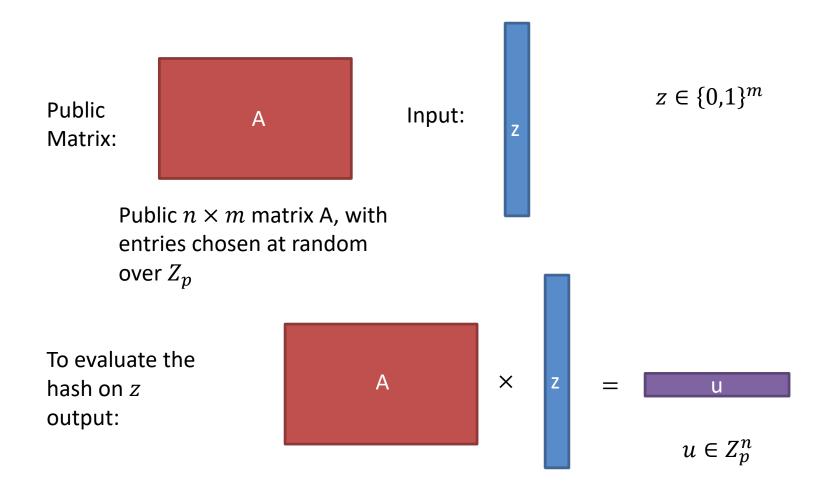
Relation to Lattices

- Worst-Case to Average-Case Reduction: Breaking the cryptosystem on average is as hard as breaking the hardest instance of the underlying lattice problem.
- SIS:

- Worst-Case to Average-Case Reduction from SIVP.

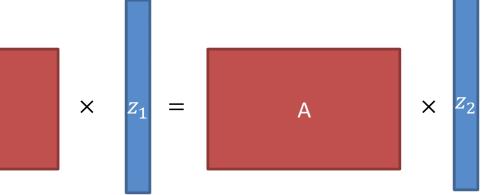
CRHF from Lattices

CRHF from Lattices



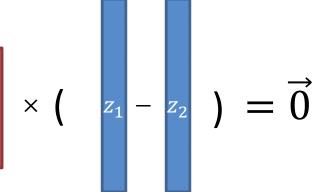
CRHF from Lattices

Given a collision $z_1, z_2 \in \{0,1\}^m$:

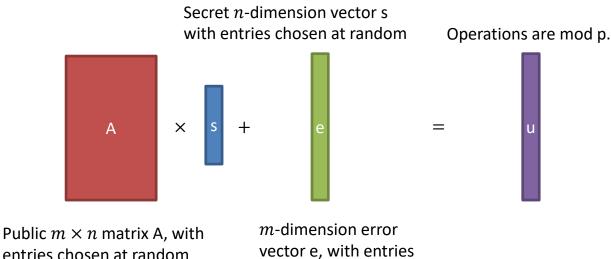


Obtain $(z_1 - z_2) \in \{-1, 0, 1\}^m$:

A



The LWE Problem (Search)

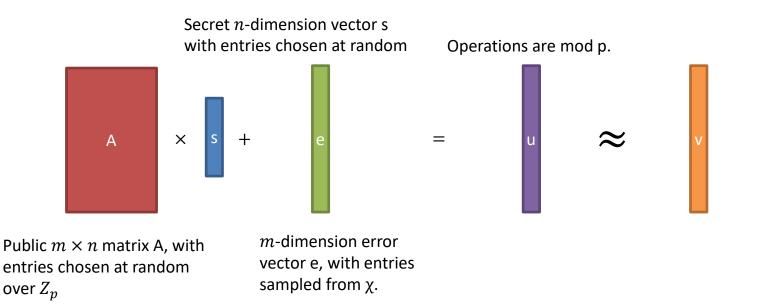


entries chosen at random over Z_p

sampled from χ .

Problem: Given, A, u = As+e, find s.

The LWE Problem (Decision)



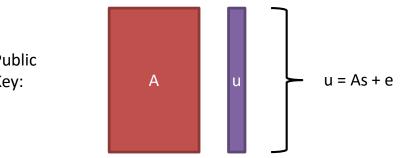
Problem: Distinguish (A, u) from (A, v)

Relation to Lattices

- Worst-Case to Average-Case Reduction: Breaking the cryptosystem on average is as hard as breaking the hardest instance of the underlying lattice problem.
- LWE:
 - Worst-Case to Average-Case Quantum Reduction from SIVP.
 - Worst-Case to Average-Case Classical Reductions from GapSVP.

Lattice-Based Encryption

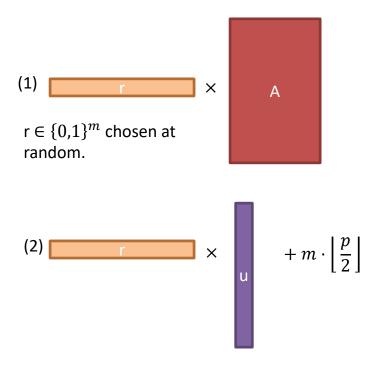
Regev's Cryptosystem [Regev '04]

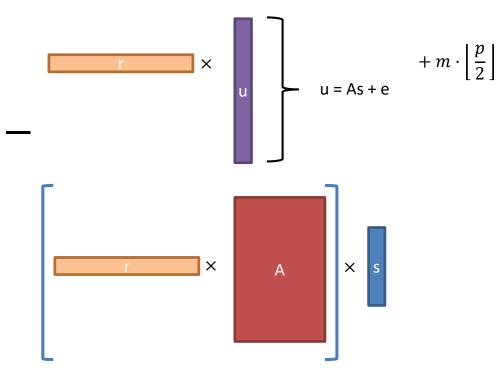


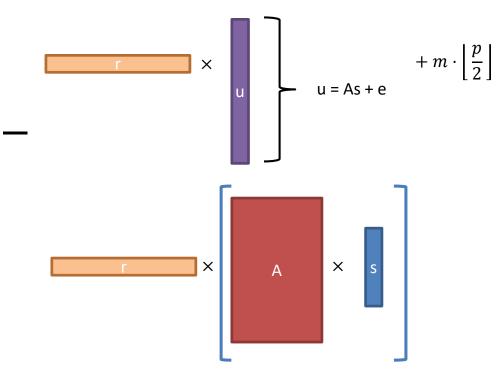
Public Key:

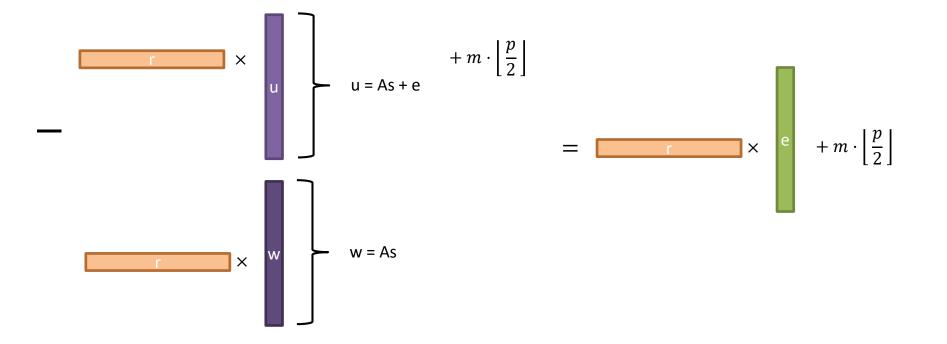
Secret Key:

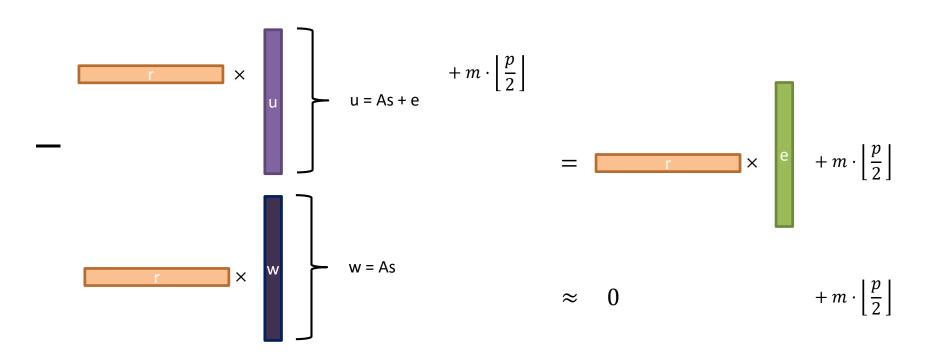
Regev's Cryptosystem—Encryption of $m \in \{0,1\}$











Properties of LWE

- Equivalance of Search/Decision LWE
- Equivalence of LWE with random secret/secret drawn from error distribution

Efficiency

- Efficiency is a main concern in lattice-based cryptosystems.
- In both SIS and LWE-based cryptosystems, the public key consists of a random matrix of size $m \times n \ (m \ge n \log p)$, requiring space $O(n^2 \log^2 p)$.
 - RSA and discrete-log based cryptosystems: public key size is linear in the security parameter.
- To reduce the public key size, consider lattices with structure.
- This is the Ring-LWE setting.

Ring-LWE Setting

• Highly efficient key exchange protocols are possible in the Ring-LWE setting.

– Similar to Diffie-Hellman Key Exchange

- It is likely that at least one such scheme will be standardized by NIST.
- Details in the slides, but will skip in the lecture.

Summary

- Lattice-based cryptography is a promising approach for efficient, post-quantum cryptography.
- All the basic public key primitives can be constructed from these assumptions:
 - Public key encryption, Key Exchange, Digital Signatures
- For more information on research projects, please contact me at: <u>danadach@umd.edu</u>

Thank you!

The Ring Setting

• Quotient ring $Z_q[x]/\Phi_m(x)$, where Φ_m is the m-th cyclotomic polynomial of degree $\varphi(m)$

$$- e.g., \Phi_{2n} = x^n + 1, n = 2, q = 13.$$

$$-x^2 = -1 \mod (x^2 + 1)$$

$$-12x^{3} + 15x^{2} + 9x + 25 \rightarrow 12x^{3} + 2x^{2} + 9x + 12 \rightarrow x - 2 + 9x + 12 \rightarrow (10,10).$$

- Lattice is defined as an ideal $I \subseteq Z[x]/\Phi_m(x)$.
- Ring-LWE and ring-SIS problems are defined by substituting the matrix A with polynomials from the quotient ring and substituting polynomial multiplication for matrix-vector multiplication.
- The public key is now a polynomial in $Z_q[x]/\Phi_m(x)$, and so can be described using $O(n \log q)$ bits.

NTT Transform

Consider Φ_m , where *m* is a power of 2. Then degree is equal to *n*, power of 2, m = 2n. $\Phi_{2n} = x^n + 1$

- Consider prime q s.t. $q = 1 \mod 2n$.
- Then we have n 2n-th primitive roots modulo q
 - Why? Z_q^* is cyclic with order q 1. $2n \mid (q 1)$.
 - Let g be a generator of Z_q^* . g is a (q 1)-th primitive root.
 - $g^{a \cdot 2n} = g^{q-1}$, since $2n \mid (q-1)$. g^a is a 2n-th primitive root. Also $(g^a)^i$, where *i* is relatively prime to 2n.
 - Note that $(g^a)^n = -1 \mod q$. Modulo $x^n + 1$ means $x^n = -1$.
 - Let $\gamma_1, \ldots, \gamma_n$ be the *n* number of 2n-th primitive roots
- For a polynomial $p(x) \in Z_q[x]/x^n+1$
- For every γ_i , $p(\gamma_i) \mod p$ is equal to taking p(x) modulo $x^n + 1$ and modulo q and then evaluating the reduced polynomial at γ_i .

NTT Transform

- For a polynomial $p(x) \in Z_q[x]/x^n+1$
- Evaluate p(x) on all n number of 2n-th primitive roots. Obtain a vector $p(\gamma_1) \dots p(\gamma_n)$.
- Can now do both addition and multiplication coordinate-wise.

Key Exchange from Ring-LWE

Simple Key Exchange

