Cryptography ENEE/CMSC/MATH 456: Homework 9 ***Choose 5 out of 8***

Due by 11:59pm on 5/10/2023.

- 1. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.
- 2. Consider the following variant of El Gamal encryption. Let p = 2q + 1, let G be the group of squares modulo p, and let g be a generator of G. The private key is (G, g, q, x) and the public key is G, g, q, h), where h = g^x and x ∈ Z_q is chosen uniformly. To encrypt a message m ∈ Z_q, choose a uniform r ∈ Z_q, compute c₁ := g^r modp and c₂ := h^r + mmodp, and let the ciphertext be ⟨c₁, c₂⟩. Is this scheme CPA-secure? Prove your answer.
- 3. In class we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.
- 4. Prove that LWE with secret s chosen from the noise distribution χ is as hard as LWE with secret s chosen uniformly at random from \mathbb{Z}_p .

Specifically, given $(A_1, u_1 = A_1s + e_1 \mod p)$ and $(A_2, u_2 = A_2s + e_2 \mod p)$, where A_1 is invertible, show how to construct an instance $(A_3, u_3 = A_3e_1 + e_3 \mod p)$, where e_1 becomes the LWE secret.

Hint: Consider setting $A_3 = -A_2 A_1^{-1}$.

5. Prove that Decision-LWE is as hard as Search-LWE. Specifically, show a "divide-and-conquer" attack, where given an adversary who solves Decision-LWE, it is possible to guess the entries of s one by one. Recall that the modulus p is polynomial in the security parameter.

Hint: Consider guessing the value of the first entry of s, denoted $s_1 \in \mathbb{Z}_q$ and choosing a column vector $a' \in \mathbb{Z}_p^m$ uniformly at random. Given an LWE instance (A, u), update the instance to $(A', u + s_1 \cdot a' \mod p)$, where A' is the matrix A with column vector a' added to its first column. What is the distribution of $(A', u + s_1 \cdot a' \mod p)$ in case the guess for s_1 is correct or incorrect?

- 6. Two bases $B_1, B_2 \in \mathbb{Z}^{n \times n}$ define the same lattice (i.e. $\Lambda(B_1) = \Lambda(B_2)$) if and only if $B_1 = B_2 \cdot U$, where U is a *unimodular* matrix. Using the above fact, construct three distinct bases B1, B2, B3 for the lattice \mathbb{Z}^3 .
- 7. Show that given an algorithm that solves the SIS problem, one can obtain an algorithm for solving the Decision-LWE problem.

Hint: Given an input (A, u), where either $u = As + e \mod p$ or u is uniform random in \mathbb{Z}_p^m , consider using SIS to find a short, non-zero vector $z \in \{0, 1\}^m$ such that $zA = 0^n \mod p$. What happens in either case when you compute the inner product $\langle z, u \rangle$?

8. Show that given an algorithm that solves the SVP problem, one can obtain an algorithm for solving the SIS problem. Specifically, given A ← Z^{n×m}_p, define a basis B and a lattice Λ(B) such that the shortest non-zero vector of Λ(B) is equal to the shortest non-zero vector z ∈ Z^m_p such that Az = 0ⁿ mod p. You may assume that A is full-rank.