1. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.

2. Consider the following variant of El Gamal encryption. Let \(p = 2q + 1 \), let \(G \) be the group of squares modulo \(p \), and let \(g \) be a generator of \(G \). The private key is \((G, g, q, x) \) and the public key is \(G, g, q, h \), where \(h = g^x \) and \(x \in Z_q \) is chosen uniformly. To encrypt a message \(m \in Z_q \), choose a uniform \(r \in Z_q \), compute \(c_1 := g^r \mod p \) and \(c_2 := h^r + mm \mod p \), and let the ciphertext be \((c_1, c_2) \). Is this scheme CPA-secure? Prove your answer.

3. In class we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.

4. Prove that LWE with secret \(s \) chosen from the noise distribution \(\chi \) is as hard as LWE with secret \(s \) chosen uniformly at random from \(Z_p \). Specifically, given \((A_1, u_1 = A_1s + e_1 \mod p) \) and \((A_2, u_2 = A_2s + e_2 \mod p) \), where \(A_1 \) is invertible, show how to construct an instance \((A_3, u_3 = A_3e_1 + e_3 \mod p) \), where \(e_1 \) becomes the LWE secret.

Hint: Consider setting \(A_3 = -A_2A_1^{-1} \).

5. Prove that Decision-LWE is as hard as Search-LWE. Specifically, show a “divide-and-conquer” attack, where given an adversary who solves Decision-LWE, it is possible to guess the entries of \(s \) one by one. Recall that the modulus \(p \) is polynomial in the security parameter.

Hint: Consider guessing the value of the first entry of \(s \), denoted \(s_1 \in Z_q \) and choosing a column vector \(a' \in Z_p^m \) uniformly at random. Given an LWE instance \((A, u) \), update the instance to \((A', u + s_1 \cdot a' \mod p) \), where \(A' \) is the matrix \(A \) with column vector \(a' \) added to its first column. What is the distribution of \((A', u + s_1 \cdot a' \mod p) \) in case the guess for \(s_1 \) is correct or incorrect?

6. Two bases \(B_1, B_2 \in Z_n \times n \) define the same lattice (i.e. \(A(B_1) = A(B_2) \)) if and only if \(B_1 = B_2 \cdot U \), where \(U \) is a unimodular matrix. Using the above fact, construct three distinct bases \(B_1, B_2, B_3 \) for the lattice \(Z^3 \).

7. Show that given an algorithm that solves the SIS problem, one can obtain an algorithm for solving the Decision-LWE problem.

Hint: Given an input \((A, u) \), where either \(u = As + e \mod p \) or \(u \) is uniform random in \(Z_p^m \), consider using SIS to find a short, non-zero vector \(z \in \{0, 1\}^m \) such that \(zA = 0^n \mod p \). What happens in either case when you compute the inner product \(\langle z, u \rangle \)?
8. Show that given an algorithm that solves the SVP problem, one can obtain an algorithm for solving the SIS problem. Specifically, given $A \leftarrow \mathbb{Z}_p^{n \times m}$, define a basis B and a lattice $A(B)$ such that the shortest non-zero vector of $A(B)$ is equal to the shortest non-zero vector $z \in \mathbb{Z}_p^m$ such that $Az = 0^n \mod p$. You may assume that A is full-rank.