## Cryptography ENEE/CMSC/MATH 456: Homework 9

 ***Choose 5 out of 8***Due by $11: 59$ pm on $5 / 10 / 2023$.

1. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.
2. Consider the following variant of El Gamal encryption. Let $p=2 q+1$, let $G$ be the group of squares modulo $p$, and let $g$ be a generator of $G$. The private key is $(G, g, q, x)$ and the public key is $G, g, q, h)$, where $h=g^{x}$ and $x \in Z_{q}$ is chosen uniformly. To encrypt a message $m \in Z_{q}$, choose a uniform $r \in Z_{q}$, compute $c_{1}:=g^{r} \bmod p$ and $c_{2}:=h^{r}+\bmod p$, and let the ciphertext be $\left\langle c_{1}, c_{2}\right\rangle$. Is this scheme CPAsecure? Prove your answer.
3. In class we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.
4. Prove that LWE with secret $s$ chosen from the noise distribution $\chi$ is as hard as LWE with secret $s$ chosen uniformly at random from $\mathbb{Z}_{p}$.

Specifically, given $\left(A_{1}, u_{1}=A_{1} s+e_{1} \bmod p\right)$ and $\left(A_{2}, u_{2}=A_{2} s+e_{2} \bmod p\right)$, where $A_{1}$ is invertible, show how to construct an instance $\left(A_{3}, u_{3}=A_{3} e_{1}+e_{3} \bmod p\right)$, where $e_{1}$ becomes the LWE secret.

Hint: Consider setting $A_{3}=-A_{2} A_{1}^{-1}$.
5. Prove that Decision-LWE is as hard as Search-LWE. Specifically, show a "divide-and-conquer" attack, where given an adversary who solves Decision-LWE, it is possible to guess the entries of $s$ one by one. Recall that the modulus $p$ is polynomial in the security parameter.

Hint: Consider guessing the value of the first entry of $s$, denoted $s_{1} \in \mathbb{Z}_{q}$ and choosing a column vector $a^{\prime} \in \mathbb{Z}_{p}^{m}$ uniformly at random. Given an LWE instance ( $A, u$ ), update the instance to ( $A^{\prime}, u+s_{1} \cdot a^{\prime}$ $\bmod p$ ), where $A^{\prime}$ is the matrix $A$ with column vector $a^{\prime}$ added to its first column. What is the distribution of $\left(A^{\prime}, u+s_{1} \cdot a^{\prime} \bmod p\right)$ in case the guess for $s_{1}$ is correct or incorrect?
6. Two bases $B_{1}, B_{2} \in \mathbb{Z}^{n \times n}$ define the same lattice (i.e. $\Lambda\left(B_{1}\right)=\Lambda\left(B_{2}\right)$ ) if and only if $B_{1}=B_{2} \cdot U$, where $U$ is a unimodular matrix.
Using the above fact, construct three distinct bases $B 1, B 2, B 3$ for the lattice $\mathbb{Z}^{3}$.
7. Show that given an algorithm that solves the SIS problem, one can obtain an algorithm for solving the Decision-LWE problem.

Hint: Given an input $(A, u)$, where either $u=A s+e \bmod p$ or $u$ is uniform random in $\mathbb{Z}_{p}^{m}$, consider using SIS to find a short, non-zero vector $z \in\{0,1\}^{m}$ such that $z A=0^{n} \bmod p$. What happens in either case when you compute the inner product $\langle z, u\rangle$ ?
8. Show that given an algorithm that solves the SVP problem, one can obtain an algorithm for solving the SIS problem. Specifically, given $A \leftarrow \mathbb{Z}_{p}^{n \times m}$, define a basis $B$ and a lattice $\Lambda(B)$ such that the shortest non-zero vector of $\Lambda(B)$ is equal to the shortest non-zero vector $z \in \mathbb{Z}_{p}^{m}$ such that $A z=0^{n} \bmod p$. You may assume that $A$ is full-rank.

