Cryptography ENEE/CMSC/MATH 456: Homework 8

Due by 2 pm on $5 / 3 / 2023$.

1. The public exponent e in RSA can be chosen arbitrarily, subject to $\operatorname{gcd}(e, \phi(N))=1$. Popular choices of e include $e=3$ and $e=2^{16}+1$. Explain why such e are preferable to a random value of the same length.
Hint: Look at the algorithm for modular exponentiation given in the lecture notes.
2. Prove formally that the hardness of the CDH problem relative to G implies the hardness of the discrete logarithm problem relative to G.
3. Can the following problem be solved in polynomial time? Given a prime p, a value $x \in Z_{p-1}^{*}$ and $y:=g^{x} \bmod p$ (where g is a uniform value in Z_{p}^{*}), find g, i.e., compute $y^{1 / x} \bmod p$. If your answer is "yes," give a polynomial-time algorithm. If your answer is "no," show a reduction to one of the assumptions introduced in this chapter.
4. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_{A} with Alice and a different key k_{B} with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?
5. Consider the following key-exchange protocol:

Common input: The security parameter 1^{n}.
(a) Alice runs $\mathcal{G}\left(1^{n}\right)$ to obtain (G, q, g).
(b) Alice chooses $x_{1}, x_{2} \leftarrow Z_{q}$ and sends $\alpha=x_{1}+x_{2}$ to Bob.
(c) Bob chooses $x_{3} \leftarrow Z_{q}$ and sends $h_{2}=g^{x_{3}}$ to Alice.
(d) Alice sends $h_{3}=g^{x_{2} \cdot x_{3}}$ to Bob.
(e) Alice outputs $h_{2}^{x_{1}}$. Bob outputs $\left(g^{\alpha}\right)^{x_{3}} \cdot\left(h_{3}\right)^{-1}$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

